International Coordination (Terrestrial service)

State Radio Monitoring Center of China Frequency Engineering Department

Coordination

Methods

Propagation

1. Basis

International Telecommunication Union(ITU):

- Radio Regulation (RR)
- **Regulation of Procedure (RoP)**

- **ITU-R** Recommendation and Report —
- CPM Report to WRC
- Master International Frequency Register(MIFR)

Purpose for frequency coordination:

- ⁻Limited resources: reasonable、 efficient、 fair
- [–] Insure interference-free operation of radio stations
- ⁻Control interference, Coexist
- ⁻International cooperation, mutual benefit
- ⁻ International recognition and protection

fair stations

Radio Regulation:

- Allocation
 - ⁻ 0~3000GHz
 - ⁻Article 5: frequency allocation
 - ⁻ Primary , Secondary service
- Two method of share frequency
 - ⁻ Coordination: efficient, first come first use
 - Plan: fair, considering future use, demand of countries

Basis

State Radio Monitoring Center of China Frequency Engineering Department

Regulations of FXM by frequency band

Categories of frequency bands

Planned bands

- Bands governed by a frequency Plan
- Very high level of regulations
- Example: GE85-EMA: maritime radio beacons in 283.5 -315 kHz in EMA

Shared bands

- Bands shared with space services
- Regulations by power limits and coordination procedures

Regulations of FXM services and BR activities significantly depend on category of frequency band

Basís

State Radio Monitoring Center of China Frequency Engineering Department

Plan Name/Type	Radiocommunication service	Frequency band	Geographical Area
			Alea
AP 25 (Allotment)	Maritime Mobile	4000 - 27500 kHz	Worldwide
AP26 (Allotment)	Aeronautical Mobile (OR)	3025 - 18030 kHz	Worldwide
AP27 (Allotment)	Aeronautical Mobile (R)	2850 - 22000 kHz	Worldwide
GE85-MM-R1	Maritime Mobile (DSC)	435 - 2160 KHz	Region 1
(Allotment)			
GE85-MAR-R1	Maritime Mobile	415 - 2160 KHz	Region 1
(Assignment)			
GE85-MAR-R1	Aeronautical	415 – 526.5 KHz	Region 1
(Assignment)	Radionavigation		
GE85-EMA	Maritime Radionavigation	283.5 - 315 KHz	European
(Assignment)			Maritime Area
The List	Various (Chapter 4 of Annex	Parts of 174-230 MHz	Parts of Region1
(Assignment)	2 to GE06 Agreement)	and 470-862 MHz	and Region3

Band	Frequency	BC/BT	Region	Plan
	(kHz/MHz)		Geo. zone	
LF	148.5 – 283.5 kHz	BC	R1	GE75
MF	526.5 – 1606.5 kHz	BC	R1 and R3	GE75
	525 – 1605 kHz	BC	R2	RJ81
	1605 – 1705 kHz	BC	R2	RJ88
VHF	47 – 68 MHz	BC, BT	EBA	ST61
/UHF	47 – 68 MHz	BT	ABA	GE89
	66 – 68 MHz	BC	EBA	ST61
	87.5 – 100 MHz	BT	EBA	ST61
	87.5 – 108 MHz	BC	R1+IRN+AFG	GE84
	162 – 170 MHz	BT	MRC	ST61
	(170 мгс) 174 – 230 MHz	BC, BT	R1-MNG+IRN	GE06
	230-238, 246-254 MHz	BT	See RR 5.252	GE89
	470 – 862 MHz	BT	R1-MNG+IRN	GE06

Basis

State Radio Monitoring Center of China Frequency Engineering Department

RR & RoP

- Volume 1: Articles
 - Article 1: Terms and definitions
 - Article 4: General rules for assignment and use of frequency
 - Article 5: Table of frequency allocations and footnotes
 - Article 9: Procedure for coordination
 - Article 11: Notification and recording of assignments
 - Article 21: Sharing between terrestrial and space services above 1 GHz
- Volume 2: Appendices
 - APP1: Classification of emissions and necessary bandwidths
 - APP4: Characteristics to be notified
 - APP5: Identification of affected administration for coordination
 - App7: Determination of coordination area
- Other provisions:

Art.24 (FS), Art. 43(AMS), Art.51,52(MMS), AP25(MMS), AP26(AM(OR)S), AP27(AM(R)S)

Bilateral agreement examples

SM.1049 HCM-Agreement

Other reference

- Handbook
- Recommendation and Report from ITU and other organizations

2. Coordination

State Radio Monitoring Center of China Frequency Engineering Department

For a New Station or a New Frequency Assignment:

- Comply with international frequency allocation and plan
- Sign and carry out bilateral agreement
- Coordination according to RR or bilateral agreement
- Reply coordination requirement in time
- Notify to BR to be Recognized: right and obligation
- Interference complain

State Radio Monitoring Center of China Frequency Engineering Department

Bilateral Coordination Meeting

Station coordination Procedure

Bilateral agreement

State Radio Monitoring Center of China Frequency Engineering Department

• Services:

- Fixed
- Mobile
- Broadcasting
- Radionavigation
- Radiolocation
- Space, etc.
- Time limit for coordination:
 - Fix and Mobile: bilateral agreement
 - Earth station : 1 month acknowledgement, 4 months reply
 - Broadcasting: Reginal plan, bilateral agreement
 - Plan for the services: Appendix 25, 26 27, 30, 30A

months reply nt 30A

State Radio Monitoring Center of China Frequency Engineering Department

Classification of coordination

Mandatory coordination

Assignments to be coordinated prior to bringing into use, Coordination with the assistance of BR, Appendix 5 to identify affected administration for coordination, Appendix 4 charateristics of stations

- Terrestrial services shared with space services above 100 MHz : Appendix 7(determination of coordination area of terrestrial service), 9.16, 9.18, 9.19
- Obtaining agreement required in footnote of Article 5: 9.11A, 9.21
- Limit or coordination requirement : pfd, WRC Resolution
- Coordination of stations of non-planned terrestrial services operating in the bands and geographical areas covered by different Regional Agreements
- Voluntary coordination Direct coordination between administrations concerned, BR has no obligation to check if the coordination is finished.
 - Bilateral agreement: Article 6 (special agreement)
 - Without assistance of BR

State Radio Monitoring Center of China Frequency Engineering Department

Coordination of terrestrial stations vis-à-vis receiving earth stations in the bands above 100 MHz shared with equal rights between terrestrial and space service and allocated to space services in space to Earth direction of transmission if the terrestrial station is located in the coordination area of an earth station (RR9.16 or RR9.18)

State Radio Monitoring Center of China Frequency Engineering Department

Coordination of transmitting terrestrial station vis-à-vis typical earth station included in the service area of a space station in the broadcasting-satellite service in the bands shared with equal rights between terrestrial and broadcasting-satellite service (RR9.19)

Obtaining agreement for a terrestrial station operating in the bands mentioned in a footnote to the Table of Frequency Allocations of RR Article 5, making reference to the provision of RR9.21

Frequency Engineering Department

3. Calculation

State Radio Monitoring Center of China Frequency Engineering Department

Interference calculation:

Assignments to be coordinated prior to bringing into use, Coordination with the assistance of BR, Appendix 5 to identify affected administration for coordination, Appendix 4 data

- Transmitting parameters : Coordinates, frequency, bandwidth, elevation, orientation and height of antenna
- Antenna Gain: figure, main lobe, side lobe
- Propagation: loss
- Coordination trigger: pfd, field strenth, coordination contour
- Criteria: E, protection ratio, Maximum permissible interference, C/I, I/N, C/N, pfd,
- Interference calculation:
- Compare to criteria:

State Radio Monitoring Center of China Frequency Engineering Department

Wanted signal:

$$P_C = P_T + G_T - L_T - L + G_R - L_R$$

Unwanted signal(Interference): $P_I = P_{T'} + G_{T'} - L_{T'} - L' + G_R - L_R$

*P*_{*C*}

 P_I

State Radio Monitoring Center of China Frequency Engineering Department

Power flux-density:

Noise:

 $N = 10\log_{10}T - 228.6 + 10\log_{10}B$

State Radio Monitoring Center of China Frequency Engineering Department

Conversion Formula

Field strength for a given isotropically transmitted power:

 $E = Pt - 20 \log d + 74.8$

Isotropically received power for a given field strength:

 $Pr = E - 20 \log f - 167.2$

Free-space basic transmission loss for a given isotropically transmitted power and field strength:

 $L = Pt - E + 20 \log f + 167.2$

Power flux-density for a given field strength:

S = E - 145.8

Where:

- *Pt* : isotropically transmitted power (dB(W))
- *Pr*: isotropically received power (dB(W))
- electric field strength (dB(mV/m)) *E* :
- frequency (GHz) f:
- d: radio path length (km)
- L: free-space basic transmission loss (dB)
- S: power flux-density $(dB(W/m^2))$.

State Radio Monitoring Center of China Frequency Engineering Department

State Radio Monitoring Center of China Frequency Engineering Department

Link calculation and interference margin

RSL = minimum C to provide

N+I_{agg} = noise plus interference

4. Propagation

State Radio Monitoring Center of China Frequency Engineering Department

Propagation model

- Satellite-satellite/space to earth: free space ITU-R Rec. P.525
- Diffraction: ITU-R Rec. P.526
- Fix/ES: ITU-R Rec. P.452(>0.1GHz, profile), P-P
- Mobile\Broadcasting: ITU-R Rec. P.1546 (30-3GHz, P-MP),
- Hata/COST231
- Appendix 7

State Radio Monitoring Center of China Frequency Engineering Department

Free space attenuation: ITU Rec. P.525

ideal medium, no reflection, refraction, absorption, scattering, heat loss.

1. Point to area link:

$$e_{\rm mV/m} = 173 \frac{\sqrt{p_{\rm kW}}}{d_{\rm km}} \qquad ({\rm mV/m})$$

2. Point to point link:

$$L_{bf} = 20 \log (4\pi d / \lambda)$$
(dB)
$$L_{bf} = 32.4 + 20 \log f(MHz) + 20 \log d(km)$$

ITU Rec.P.526 : Multi-edged diffraction

Obstruction within the path's Fresnel zone, combined with another model

ITU Rec. P.452 Propagation Model

f> 0.1 GHz, station on the surface, $0.001 \le p \le 50\%$

The procedure uses the propagation models listed below:

line-of-sight (including signal enhancements due to multipath and focusing effects)

$$L_{bfsg} = 92.5 + 20 \log f + 20 \log d + A_g$$
 dB

Ag: Atmospheric absorption

Total loss: blending mechanism, with a terrain database, path profile

- Multipath
- Diffraction (embracing smooth-Earth, irregular terrain and sub-path cases)
- Tropospheric scatter
- Surface ducting
- Layer reflection and refraction
- Hydrometeor scatter

– Ducting

Depending on the type of path, as determined by a path profile analysis, one or more of these models are exercised in order to provide the required prediction of basic transmission loss.

State Radio Monitoring Center of China Frequency Engineering Department

State Radio Monitoring Center of China Frequency Engineering Department

ITU Rec. P.1546 : coverage prediction

- Curves represent field strength exceeded at 50% of locations for 1kW ERP transmission as function of:
 - Frequency:1-3G, 100, 600, 2000 MHz
 - Time: 50%, 10%, 1%
 - Tx antenna height: 10 to 1200 m; Rx antenna height: local clutter height (minimum 10 m)
 - Path type: land, warm sea, cold sea
 - Distance: 1 to 1000 km
 - Interpolation method for all of above
- Curves are based on extensive measurement campaigns in Europe, North America, the North Sea and Mediterranean.

120 110 100 90 80 7060 504N 3020 10 -10 -20 -30 -40 -50 -60 -70 -80

e.r.p.

₹

uV/m) for

Щ С Ц

Strength

Field

2 000 MHz, land, 10% time

State Radio Monitoring Center of China Frequency Engineering Department

Hata/COST 231: CEPT ERC Rep. 68, average path loss

- The scope of application
 - d: 1-100km
 - F: 100-3000MHz
 - T: 50%

Height of antenna: $20 \sim 200$ m

Height of mobile: $1 \sim 10$ m

Condition: Urban, suburban, rural

 $E = 69.82 - 6.16 \log f + 13.82 \log H_1 + a(H_2) - (44.9 - 6.55 \log H_1)(\log d)^b$

State Radio Monitoring Center of China Frequency Engineering Department

Appendix 7:

- Coordination contour around a satellite earth station
- ITU-R SM.1448
- 100MHz-105GHz
- Mode 1: great circle smooth earth propagation similar to P.452
- Mode 2: hydrometeor scatter

5. Methods

Methods

State Radio Monitoring Center of China Frequency Engineering Department

Land Mobile Service

- In the case of the Land Mobile Service the effective radiated power and the effective antenna height of stations shall be chosen so that their range is confined to the area to be covered.
- Excessive antenna heights and transmitter outputs shall be avoided by using several locations and low effective antenna heights.
- Directional antennas shall be used in order to minimise the potential of interference to the neighbouring country.

Fixed Service

- The effective radiated power and the antenna height of stations in the Fixed Service shall be chosen according to the radio links lengths and the required quality of service. Excessive antenna heights, excessive transmitter outputs and too low antenna directivities shall be avoided in order to minimise the potential of interference to the country affected.

Methods

State Radio Monitoring Center of China Frequency Engineering Department

Mobile Service Coordination

- Station by station coordination
- Agreement:

- Preferential frequency:

Frequencies which the Administrations concerned may assign, without prior co-ordination, on the basis of bi- or multilateral agreements, greater flexibility and can operate at higher powers

-Non-preferential frequency:

The frequency which was used by the other Administrations as preferential frequency

-Share frequency:

Frequencies which may be shared without prior co-ordination, on the basis of bi- or multilateral agreements

-Frequencies using preferential codes:

Frequencies which the Administrations concerned may assign, without prior co-ordination, on the basis of bi- or multilateral agreements

Frequency Separation

Country A

Country B

Synchronization

Example of Preferential Frequency

Preferential :

L1=d1 km,	E1≤
non-preferential:	
T A 1A 1	

L2=d2 km,	$E2 \leq$
shared channels:	

L3=d3 km, $E3 \leq$

L=cross-border distance

-	104	105	11 2	113	12 4
3		shar	ed	A	ł

Tabla

State Radio Monitoring Center of China Frequency Engineering Department

<u>Rec. SM.1049</u>

Frequency Bands	Max. Field Strength of	Max. Range of Interference
	Interference Allowed	on the Border
(MHz)	dB(µV/m)	km
29.7-47.0	0	100
47.0-108.0	6	100
108.0-380.0	12	80
380.0-400.0	18	60
400.0-606.0	20	50
606.0-960.0	26	30

- produces an interference field strength exceeding the maximum permissible value as given the form at a station entered in the Frequency Register or completing coordination
- does not meet the conditions governing the maximum cross-border ranges of harmful interference as given in the form.

Fixed Service Coordination

1.1 The co-ordination distance depends on the frequency range. The distances in the following table are recommended:

Frequency range	Co-ordination distance
[GHz]	[km]
1 - 5	200*
>5 - 10	150*
>10 - 12	100
>12 - 20	80
>20 - 24.5	60
>24.5 - 30	40
>30 - 39.5	30
>39.5 - 43.5	20

* The co-ordination distance for frequencies below 10 GHz is limited to 100 km for antenna heights below 300m above sea level.

Note: All stations which may cause harmful interference to stations in other countries or need protection shall be coordinated regardless of the distance. *Guidance for bilateral-multilateral discussions on the use of frequency range 1 350 MHz - 43.5 GHz by fixed service systems *ITU-R Rec.F.1095: Coordination distance between stations of fixed service

Earth Station Coordination Contour:

Appendix 4: Characteristics

Appendix 7: coordination contour

Rec. SF.1006: Max. Permitted Interference

Mode 1: Long term

$$P_r(p_1) = 10 \log(kT_rB) + J - W$$

Mode 2: Short term

 $P_r(p_2/n_2) = 10\log(kT_rB) + 10\log(10^{M_s/10} - 1) + N_L - W$

dBw

dBw

Frequency range (GHz)		1-	10	1-10	1-10		10-15		10-15		15-40	15-40
Service of interfering system		Fixed-s	atellite	Fixed- satellite	Fixed		Fixed		Fixed-satellite		Fixed	Fixed- satellite
	Service	Fix	Fixed		Fixed-s	d-satellite Fixed-satellite		Fixed		Fixed- satellite	Fixed	
Wanted system	Station type	Radio	-relay	Trans- horizon	Earth station		Earth station		Radio-relay		Earth station	Radio- relay
	Modulation	А	Ν	А	А	Ν	А	Ν	А	Ν	Ν	Ν
<i>p</i> ₁ (%)		20	20	20	20	20	20	20	20	20	20	20
p ₂ ((%)	0.01	0.005	0.01	0.03	0.005	0.03	0.005	0.01	0.005	0.003	0.005
n	2	2	3	1	3	3	2	2	2	3	2	1
<i>B</i> (1	Hz)	$4 imes 10^3$	106	$4 imes 10^3$	106	106	106	106	4×10^3	106	106	106
J(dB)		9	-6	0 (1)	-10	-10	-8.5	-8.5	13	-2(2)	-7	0 (2)
W(dB)		0	0	0	4	0	4	0	0	0	0	0
$T_r(K)(^3)$		750	750	500	100	100	200	200	1 500	1 500	300	3 200
M_s ((dB)	33	37	26	2	2	4	4	33	37	6	25
N_L ((dB)	0	0	0	1	1	1	1	0	0	1	0

Methods

State Radio Monitoring Center of China Frequency Engineering Department

Sharing between terrestrial and space service

- Share band:
- allocation to both of the service with equal rights
- >100MHz, more than 60 bands are shared bands
- Protection of space service from terrestrial service:
- Protection of receiving space station(uplink): Article 21 Power limit :21.5, Max. e.i.r.p: 21.3 e.i.r.p to GSO: 21.4

– Protection of receiving earth station(downlink): Appendix 7, coordination required when a terrestrial transmitting station is located within coordination area

Max. e.i.r.p for Transmitting Station in Fixed and Mobile Service to Protect satellite: RR 21.2, 21.3 etc.

TABLE 21-1

Frequency band (GHz)	e.i.r.p. value (dBW) (see also Nos. 21.2 and 21.4)	Minimum separation angle with respect to geostationary-satellite orbit (degrees)
1-10	+35	2
10-15	+45	1.5
25.25-27.5	+24 (in any 1 MHz band)	1.5
Other bands above 15 GHz	+55	No limit ³

<u>Protection of terrestrial service from space service :</u>

- Protection of receiving terrestrial service from space station(downlink) : pfd in 21.4
- Protection of receiving terrestrial service from transmitting earth station (uplink):

Appendix 7, coordination is required when a receiving terrestrial station is located within coordination area of transmitting ES RR 21.14,21.15: Minimum angle of elevation for ES RR 21.8,21.10: Power limits for ES

<u>Power Flux-Density(pfd) to Protect Terrestrial Service From Space Stations</u>

TABLE 21-4 (Rev.WRC-07)

Frequency band	Service*	Limit in dB(W/m ²) for angles of arrival (δ) above the horizontal plane						
		0°-5°	5	°-25°	25°-90°			
1670-1700 MHz	Earth exploration- satellite Meteorological-satellite	-133 (value based on sharing with meteorological aids service)						
1 518-1 525 MHz (Applicable to the	Mobile-satellite (space-to-Earth)	$0^{\circ} \le \delta \le 4^{\circ}$	4° < δ ≤ 20°	$20^{\circ} < \delta$ $\leq 60^{\circ}$	60° < δ ≤ 90°			
territory of the United States in Region 2 between the longitudes 71° W and 125° W)		-181.0	-193.0 + 20 log δ	-213.3 + 35.6 log δ	-150.0			

Receiving Terrestrial station

Example of EMC Software

+ 900	۲							
P	OV	VRAP <mark>d</mark> B Demo	台站 链. 组	经度	纬度	类.	ij	发射 [N
	90	D 数据库台站	Test	116°21'48.90" 东经	40°12'28.54" 北纬	FB	12.00	935.00
		一种 我的站址						
L		- 角 查询 QStation						
		- 角 模板台站						
	1	A 大國搜索						
11		一种搜索引擎						
Ш.	(B) C	5 数据库中的组						
	0 C	> 数据库中的网络						
11	0 C	5 数据库中的卫星网络						
	00	2 设备						
Н.		- • 天线						
Ш.		──□ 发射机						
Ш.		- □ 接收机						
н.		-□ 滤波器						
		- 0 移动台						
Ш.		-○ 电缆						
	⊕ ¢	▷ 分配						
	O II	FIC						
₽	@ V	VRAP Sqlserver						
0	@ V	WRAPdB ATMB						
P	00	DbsMan						
0	(0) F	IA						
8	0 2	当前项目						
ι.	-	0项目中的台站						
	(B) C	5项目中的组						
		项目中的网络						
		5项目中的卫星网络						
L .	(H) C	2 项目中的模板						
	E-C							
		日 2 復憲氾問に異結果区域						
		- 54 Test, 2014/7/10, 9:50						
		→ 覆盖沱固计算结果,残						
		一回復遊沱西江具結朱、魚						
		→ 洞童的復意氾固计算结来						
		の変更地間に取け算結果						
		● 电信业务量订算结果						
	8	日本の変更には語来						

Monitoring

Spectrum-4.2-04

Harmful Interference : Appendix 10

AP10-1

APPENDIX 10 (REV.WRC-07)

Report of harmful interference

(See Article 15, Section VI)

Particulars concerning the station causing the interference:

Name, call sign or other means of identification

Frequency measured

Date:

Time (UTC):

Class of emission¹

d Bandwidth (indicate whether measured or estimated)

Measured field strength or power flux-density²

Time (UTC):

Observed polarization

g Class of station and nature of service

h Location/position/area/bearing (QTE³) (WRC-07)

i Location of the facility which made the above measurements

Particulars concerning the transmitting station interfered with:

j Name, call sign or other means of identification

k Frequency assigned

AP10-2

Frequency measured

Date:

Time (UTC):

- Class of emission⁴
- Bandwidth (indicate whether measured or indicate the necessary bandwidth no Radiocommunication Bureau)
- Location/position/area
- Location of the facility which ma measurements

Particulars furnished by the receiving station experien

Name of station

q

r

х

- Location/position/area
- s Dates and times (UTC) of occurrent interference
 - Bearings (QTE5) or other particulars (WRG
- Nature of interference
- Field strength or power flux-density of the at the receiving station experiencing the int

Date:

Time (UTC):

- Polarization of the receiving antenna polarization
- Action requested

NOTE – For convenience and brevity, telegraphic reports shall be in the format above, using the letters in the order listed in lieu of the explanatory titles, but only those letters for which information is provided should be used. However, sufficient information shall be provided to the administration receiving the report, so that an appropriate investigation can be conducted.

or estimated, or otified to the	
de the above	
icing the interferen	ce:
ce of harmful	
C-07)	
wanted emission	
terference	
a or observed	

Remarks

State Radio Monitoring Center of China Frequency Engineering Department

International Coordination Is:

- Based on Regulation and Bilateral Agreement
- **Right and obligation**
- Share frequency bands on equal basis
- A kind of technical measures to safeguard the interests for both countries

hanks