

Spectrum Management for 4G-LTE

Ol Global Frequency Planning

for IMT

· 13

Frequency Planning and Usage of 4G in China

4G Interference Solutions in China

Consideration on Future Frequency Planning

Spectrum is lifeblood of mobile communication system.

- The connecting devices of future global mobile networks will reach **100 billion**
- 2010-2020 the global mobile data traffic will grow by over 200 times , and 2010-2030 by nearly 20,000 times .
- In China, the growth is projected to be even higher, with 2010-2020 growth by over **300 times** and 2010-2030 by over **40,000 times**.

CAICT

中国信息诵

Estimated Spectrum Requirement

Spectrum Requirement (MHz)*				
Spectrum for	year 2015	year 2020		
Final(China)	570-690	1490-1810		
Final(Global result)	_	1340-1960MHz		

700-1100MHz additional spectrum will be needed by 2020.

Estimate for further beyond 2020 will consider more than just a sum but respective requirements in different scenarios.

Introduction of IMT

• International Mobile Telecommunications:

International Telecommunication Union (ITU) develops the framework of standards for IMT, encompassing IMT-2000 and IMT-Advanced, spans the 3G and 4G industry perspectives and will continue to evolve as 5G with IMT-2020

Global 4G-LTE

LTE Market Status

717 operators investing in LTE in 190 countries

- 691 operator commitments in 185 countries
- 26 pre-commitment trials in 5 more countries

494 commercially launched LTE or LTE-Advanced networks in 162 countries incl. 72 LTE TDD (TD-LTE) launched in 43 countries
GSA forecasts 550 commercially launched LTE networks by end 2016
5,104 LTE user devices announced (GSA – April 7, 2016)
1.068 billion LTE subscriptions globally: Q4 2015
© GSA www.gsacom.com 226 operators (45.8%) commercially launched LTE networks in 104 countries use 1800 MHz

126 operators in 60 countries investing in VoLTE deployments, studies or trials

55 operators commercially launched VoLTE-HD voice in 34 countries

LTE-Advanced is a key industry trend

175 LTE operators are investing in LTE-Advanced deployments, studies or trials in 76 countries

127 commercially launched LTE-A networks in 61 countries

Global 4G-LTE Bands

4G-LTE User Devices

LTE TDD	
2300 MHz band 40	1,435 devices
2600 MHz band 38	1,207 devices
2600 MHz band 41	1,121 devices
1900 MHz band 39	996 devices
3500 MHz band 42/43	64 devices
LTE FDD	
1800 MHz band 3	2,847 devices
2600 MHz band 7	2,638 devices
2100 MHz band 1	2,324 devices
800 MHz band 20	1,573 devices
800/1800/2600 tri-band	1,477 devices
AWS band 4	1,231 devices
850 MHz band 5	1,163 devices
900 MHz band 8	1,136 devices
700 MHz band 17	1,018 devices
1900 MHz band 2	1,031 devices
700 MHz band 13	575 devices
APT700 band 28	329 devices
1900 MHz band 25	257 devices
700 MHz band 12	248 devices

ITU Spectrum Management

 ITU coordinates the world's satellites through the management of spectrum and orbits, bringing you television, vehicle GPS navigation, maritime and aeronautical communications, weather information and online maps, and enabling communications in even the remotest parts of the planet.

3GPP Spectrum

 The project covers cellular telecommunications network technologies, including radio access, the core transport network, and service capabilities - including work on codecs, security, quality of service - and thus provides complete system specifications, especially definition of bands, RF specification.

CAICT

中国信息通信码

Development of Mobile Communication

ITU Radio Regulation

- RR regulates on law of nations scale radiocommunication services and the utilization of radio frequencies.
- Revised regarding the World Radio Conference outputs every 3 to 4 years.

How to Identify IMT Spectrum in ITU

• Allocation for Mobile services

• Identify for IMT based on services

Allocation to services						
Region 1 Region 2 Region 3						
450-455 FIXED MOBILE 5.286AA 5.209 5.271 5.286 5.286A 5.286B 5.286C 5.286D 5.286E						
455-456 FIXED MOBILE 5.286AA	455-456 FIXED MOBILE 5.286AA MOBILE-SATELLITE (Earth-to-space) 5.209 5.286A 5.286B 5.286C	455-456 FIXED MOBILE 5.286AA				
5.209 5.271 5.286A 5.286B 5.286C 5.286E		5.209 5.271 5.286A 5.286B 5.286C 5.286E				
456-459 FIXED MOBILE 5.286AA 5.271 5.287 5.288						
459-460 FIXED MOBILE 5.286AA	459-460 FIXED MOBILE 5.286AA MOBILE-SATELLITE (Earth-to-space) 5.209 5.286A 5.286B 5.286C	459-460 FIXED MOBILE 5.286AA				
5.209 5.271 5.286A 5.286B 5.286C 5.286E		5.209 5.271 5.286A 5.286B 5.286C 5.286E				

5.286AA The band 450-470 MHz is identified for use by administrations wishing to implement International Mobile Telecommunications (IMT). See Resolution 224 (Rev.WRC-07)^{*}. This identification does not preclude the use of this band by any application of the services to which it is allocated and does not establish priority in the Radio Regulations. (WRC-07)

IMT Global Frequency Planning

- IMT frequency bands utilization is globalized
- Frequency bands are identified for IMT at WRCs
- Frequency arrangements for IMT is detailed in the Rec ITU-R M.1036

ITU-R M.1036 Footnotes

Band	Footnotes identifying the
(MHz)	band for IMT
450-470	5.286AA
698-960	5.313A, 5.317A
1 710-2 025	5.384A, 5.388
2 110-2 200	5.388
2 300-2 400	5.384A
2 500-2 690	5.384A
3 400-3 600	5.430A, 5.432A, 5.432B, 5.433A

Administrations may deploy IMT systems in bands allocated to the mobile service other than those identified in the RR, and administrations may deploy IMT systems only in some or parts of the bands identified for IMT in the RR.

CAICT

中国信息通信研究院

<u>450-470MHz</u>

Frequency arrangements in the band 450-470 MHz

		Paired arrangements				
Frequency arr	rangements	Mobile station transmitter	Centre gap (MHz)	Base station transmitte	Duplex separat ion	Un-paired arrangements (e.g. for TDD) (MHz)
		(MHz)		r (MHz)	(MHZ)	
D1		450.000- 454.800	5.2	460.000- 464.800	10	None
D2		451.325- 455.725	5.6	461.325- 465.725	10	None
D3		452.000- 456.475	5.525	462.000- 466.475	10	None
D4		452.500- 457.475	5.025	462.500- 467.475	10	None
D5		453.000- 457.500	5.5	463.000- 467.500	10	None
D6		455.250- 459.975	5.275	465.250- 469.975	10	None
D7		450.000- 457.500	5.0	462.500- 470.000	12.5	None
D8						450-470 TDD
D9		450.000- 455.000	10.0	465.000- 470.000	15	457.500-462.500 TDD
D10)	451.000- 458.000	3.0	461.000- 468.000	10	None
D11	450.500- 457 500	3.0	460.500- 467 500	10		None

<u>694-960MHz</u>

Paired Frequency arrangements in the band 694-960 MHz

		Paired arrangements				
a	Frequency arrangements	Mobile station transmitter (MHz)	Centre gap (MHz)	Base station transmitter (MHz)	Duplex separation (MHz)	Un-paired arrangements (e.g. for TDD) (MHz)
	A1	824-849	20	869-894	45	None
	A2	880-915	10	925-960	45	None
	A3	832-862	11	791-821	41	None
	A4	698-716	12	728-746	30	716-728
		776-793	13	746-763	30	
	A5	703-748	10	758-803	55	None
	A6	None	None	None		698-806
	A7	703-733	25	758-788	55	None
	A8	698-703	50	753-758	55	None
	A9	733-736	52	788-791	55	None
	A10	External	-	738-758	-	None
	A11	703-733	25	758-788	55	None
	(harmonized with A7 and A10)	External	-	738-758	-	

1710-2200MHz

Frequency arrangements in the band 1710-2200 MHz

	Paired arrangements				Un-paired	
Frequency arrangements	Mobile station transmitter (MHz)	Centre gap (MHz)	Base station transmitter (MHz)	Duplex separation (MHz)	arrangements (e.g. for TDD) (MHz)	Relevant Notes
B1	1 920-1 980	130	2 110-2 170	190	1 880-1 920; 2 010-2 025	1, 2, 4
B2	1 710-1 785	20	1 805-1 880	95	None	1
В3	1 850-1 920	10	1 930-2 000	80	1 920-1 930	1, 2, 5
B4 (harmonized with B1 and B2)	1 710-1 785 1 920-1 980	20 130	1 805-1 880 2 110-2 170	95 190	1 880-1 920; 2 010-2 025	1, 2, 4
B5 (harmonized with B3 and partially harmonized with the downlink of B1 and the uplink of B2)	1 850-1 920 1 710-1 780	10 330	1 930-2 000 2 110-2 180	80 400	1 920-1 930	1, 2, 3, 5
B6	1 980-2 010	160	2 170-2 200	190	None	4, 5
В7	2 000-2 020	160	2 180-2 200	180	None	5

2300-2400MHz

Frequency arrangements in the band 2300-2400 MHz

2500-2690MHz

Frequency arrangements in the band 2500-2690 MHz (not including the satellite component)

	Paired arrangements					
Frequency arrangements	Mobile station transmitter (MHz)	Centre gap (MHz)	Base station transmitter (MHz)	Duplex separation (MHz)	Centre gap usage	Un-paired arrangements (e.g. for TDD) (MHz)
C1	2 500-2 570	50	2 620-2 690	120	TDD	2 570-2 620 TDD
C2	2 500-2 570	50	2 620-2 690	120	FDD	2 570-2 620 FDD DL external
C3			Flexible I	FDD/TDD		

3400-3600MHz

Frequency arrangements in the band 3 400-3 600 MHz

		Paired arrang	gements		
Frequency arrangements	Mobile station transmitter (MHz)	Centre gap (MHz)	Base station transmitter (MHz)	Duplex separatio n (MHz)	Un-paired arrangements (e.g. for TDD) (MHz)
F1					3 400-3 600
F2	3 410-3 490	20	3 510-3 590	100	None

3GPP Bands

(TDD Bands)

Operati ng Band	Uplink (UL) operating band BS receive UE transmit	Downlink (DL) operating band BS transmit UE receive
	FUL_low-FUL_high(MHz)	FUL_low-FUL_high(MHz)
33	1900–1920	1900–1920
34	2010–2025	2010–2025
35	1850–1910	1850–1910
36	1930–1990	1930–1990
37	1910–1930	1910–1930
38	2570–2620	2570–2620
39	1880–1920	1880–1920
40	2300–2400	2300–2400
41	2496-2690	2496-2690
42	3400–3600	3400–3600
43	3600–3800	3600–3800
44	703–803	703–803
45	1447–1467	1447–1467
46	5150- 5925	5150- 5925

	BS receive	BS transmit
Operating Band	UE transmit	UE receive
	<u>FUL_low-FUL_high(MHz)</u>	FUL_low-FUL_high(MHz)
1	1920-1980	2110 –2170
2	1850–1910	1930–1990
3	1710–1785	1805 – 1880
4	1710–1755	2110 –2155
5	824–849	869 – 894
6	830–840	875 –885
7	2500–2570	2620 – 2690
8	880–915	925 –960
9	1749.9–1784.9	1844.9 – 1879.9
10	1710–1770	2110 –2170
11	1427.9–1447.9	1475.9 –1495.9
12	699–716	729 –746
13	777–787	746 –756
14	788–798	758 –768
15	Reserved	Reserved
16	Reserved	Reserved
17	704–716	734 –746
18	815–830	860 –875
19	830–845	875 –890
20	832–862	791 –821
21	1447.9–1462.9	1495.9 –1510.9
22	3410–3490	3510 –3590
23	2000–2020	2180 –2200
24	1626.5-1660.5	1525 –1559
25	1850–1915	1930 –1995
26	814–849	859 –894
27	807–824	852 –869
28	703–748	758 –803
29	N/A	717 –728
30	2305–2315	2350 – 2360
31	452.5-457.5	462.5-467.5
32		1452– 1496
65	1920–2010	2110–2200
66	1710–1780	2110–2200
67	N/A	738–758
68	698–728	753–783

3GPP RF Specification

3GPP TS 36.101 V10.22.0 (2016-03)

Technical Specification

Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) radio transmission and reception (Release 10)

3GPP TS 36.104 V13.3.0 (2016-03)

Technical Specification

3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS) radio transmission and reception (Release 13)

IMT Development

Mobile Subscriptions Sustained Growth & Explosive Increase in 4G subscriptions

By Jul. 2016:

- Total number of mobile subscribers: **1.304 billion**
- Accelerated transition from 2G&3G to 4G. total 4G subscribers: **646 million**, 4G penetration rate:

49.5 %

Total mobile broadband
 (3G&4G) subscriptions: about 858
 million. Mobile broadband
 penetration rate : 65.7%

 Statistics by Jul 2016, 519.2
 billion Yuan income from mobile service in 7 months, increased by
 4.5% comparing to last year.

IMT Development

IMT Development

Frequency Management

- **National Frequency Allocation**
 - Regulations on the Radio Frequency Allocation of the People's Republic of China (2014)
 - Revised and updated according to the ITU Radio Regulations after each WRC. National economy, society, and military factors are taken into account.

IMT Footnotes in China

Frequency band (MHz)	IMT Footnotes
450-470	5.286AA CHN28
698-960	5.313A, 5.317A CHN28
1710-2025	5.384A, 5.388 ,5.388A
2110-2200	5.388, 5.388A
2300-2400	5.384A CHN28
2500-2690	5.384A CHN20
3400-3600	5.432B, 5.433A CHN28

CHN20:From the date of promulgation, research, production and use of new radio stations of radiolocation service shall note be permitted in this band.. The existing radiolocation service stations can be used until to the end of lifetime. During this period, the interference coordination of such radio station should be carried out on a primary basis.

CHN28: In this band, the quoted international footnotes on ITM application do not change the primary or secondary basis of existing services in the allocation table for mobile service. The study should be carried out on applying mode for the planned services, frequency use plan, compatible condition between services and coordination procedure in this band as soon as possible. Erenow, ITM applications are not put into practical operation, but in 2300-2400MHz band, ITM can be permitted to indoor use.

IMT Frequency Planning in China

FDD (MHz)	TDD (MHz)	Total BW(MHz)
825-835/870-880	1880-1920	
889-915/934-960	2010-2025	C07
1710-1785/1805-1880	2300-2400	687
1920-1980/2110-2170	2500-2600	

IMT Frequency Usage in China

Operator		Total BW (MHz)	Network		
P	China Telecom	110	1 CDMA, 1 LTE(TDD/FDD Hybrid)		
	China Mobile	250	1 GSM, 1 TD-SCDMA, 1 LTE(TD-LTE)		
° ‰	China Unicom	162	1 GSM, 1 WCDMA, 1 LTE (TDD/FDD Hybrid)		
Total		522	8		

4G Frequency Roadmap

4G Frequency Usage in China

Operator		FDD Bands	Total FDD BW (MHz)	TDD Bands	Total TDD BW (MHz)
P	China Telecom	825-835/870-880 1765-1780/1860-1875 1920-1940/2110-2130	90	2635-2655	20
	China Mobile			1880-1915 2320-2370 2575-2635	145
	China Unicom	909-915/954-960 1750-1765/1845-1860 1955-1965/2145-2155	62	2300-2320 2555-2575	40
_	Total		152		205

Interference Impact on 4G Systems

• Coverage loss

• Throughput loss

Sources of Interference

• Self-interference

 ✓ Interference between the cells of deployed networks, such as cross time slot interference, GPS asynchronous interference, interference caused by over coverage

✓ Solutions: optimization of operator networks

Sources of Interference

- External-interference
 - ✓ Interference occurred when the LTE bands are illegally used by other systems, or the spurious emission, blocking and intermodulation interference.
- Solutions :
 - ✓ Regulatory documents for frequency management should be appropriately developed and strictly followed.
 - ✓ Interference coordination for deployed networks should be conducted when necessary.

Types of External Interference

- Co-channel interference
 - Crosstalk from two different radio transmitters using the same frequency, it can be caused by illegal stations, stations of the neighboring countries in the border areas without coordination, etc.
- Adjacent channel interference
 - ✓ Interference caused by extraneous power from a signal in an adjacent channel;
 - ✓ Out of band, spurious ,blocking, intermodulation interference

• spurious interference

• Intermodulation interference

Adjacent Channel Interference

Potential Interference Scenarios

Between LTE and other systems

Between 1.8GHz LTE and 1800MHz Broadband wireless access system

Between 1.8GHz LTE and GSM1800

Between 2.3GHz LTE and WLAN

Between 2.6GHz LTE and RDSS

Between 2.6GHz LTE and radar

Between LTE systems

- Between TD-LTE systems in 2.3GHz and 2.6GHz
- Between 1.8GHz、 1.9GHz、 2.1GHz TD-LTE and LTE FDD

LTE and other Systems

- Methods to eliminate potential interference :
 - ✓ Formulate reasonable RF specifications (transmitter, receiver)
 - ✓ Stations isolation
 - ✓ Set up corresponding guard bands

TD-LTE and LTE FDD Systems

- Mainly refers to the out of band and spurious interference between BS, the interference between user terminals can be ignored.
- The unwanted transmitter power limit (-65dBm/MHz), receiver blocking limit(-5dBm)and minimum coupling loss (50dB) are specified in regulatory documents.
- Set up 5MHz guard bands.

TD-LTE

LTE FDD

TD-LTE and LTE FDD Systems

Fig. TDD BS interfered by FDD BS in frequency band 1.8GHz

TD-LTE and TD-LTE Systems

• If the TD-LTE systems are asynchronous and operating in adjacent channels, spurious and blocking interference between BS may occur, especially when the stations are close to each other.

It is stipulated that:

"In order to eliminate interference, time synchronization and the unified time slot ratio should be applied when TD-LTE systems are operating in adjacent channels."

TD-LTE and TD-LTE Systems

CAICT

中国信息通信研究院

Interference Monitoring Test for 4G

Fig. Interference monitoring test in certain area

Interference Monitoring Test for 4G

- Step1: Test environment verification
 - ✓ LTE FDD: China Telecom, 1765-1780/1860-1875 MHz, 32 base stations, 94 sectors
 - ✓ LTE FDD: China Unicom, 1755-1765/1850-1860 MHz, 33 base stations, 99 sectors
 - ✓ TD LTE: China Mobile, 1880-1900 MHz, 45 base stations, 130 sectors
 - ✓ Devices in 75 TD-LTE sectors do not satisfy the blocking requirements
 - Interference determination criterions
 - ✓ Interference Signal Power ≥-110dBm/RB; (RB: Resource Block)
 - ✓ Number of interfered RB \ge 10

Interference Monitoring Test for 4G

- Step2: Interference monitoring cases
 - ✓ Case 1: CT and CU BSs power off
 - ✓ Case 2: CT BSs 50% virtual load, CU BSs power off
 - ✓ Case 3: CT BSs 75% virtual load, CU BSs power off
 - ✓ Case 4: CT BSs power off, CU BSs 50% virtual load
 - ✓ Case 5: CT BSs power off, CU BSs 75% virtual load
 - ✓ Case 6: CT and CU BSs 50% virtual load
 - ✓ Case 7: CT and CU BSs 75% virtual load

Interference Monitoring Test for 4G

Interference caused by CT LTE FDD system

No interference (CT BSs power off)

- ✓ Case 1: CT and CU BSs power off
- ✓ Case 4: CT BSs power off, CU BSs 50% virtual load
- ✓ Case 5: CT BSs power off, CU BSs 75% virtual load

Interference (CT BSs power on)

- ✓ Case 2: CT BSs 50% virtual load, CU BSs power off
- ✓ Case 3: CT BSs 75% virtual load, CU BSs power off
- ✓ Case 6: CT and CU BSs 50% virtual load
- ✓ Case 7: CT and CU BSs 75% virtual load

Interference Monitoring Test for 4G

Interference caused by CT LTE FDD system(5 sectors)

Interference Monitoring Test for 4G

• Step 3: Monitoring test for interference avoidance measures(interfered BS 2 sector 2&3)

Investigation: Position of the two BSs and their antennas

Interference Monitoring Test for 4G

Adjustment: increase the exterior angle between two antenna by 30 degree

Interference mitigated !

Before the adjustment

After the adjustment

Interference Monitoring Test for 4G

- Monitoring Results
 - ✓ In the test condition, 5 sectors of 130 TD LTE sectors operated by China Mobile are interfered.
 - ✓ Interference mainly caused by LTE FDD downlink is operated by China Telecom, while interference from LTE FDD operated by China Unicom has not been found.

Conclusion

✓ Interference can be efficiently mitigated by engineering adjustment measures.

- Reasonable deployment of stations
- Set protection band
- Isolation of antenna
- Antenna polarization
- Adaptive antenna
- Improvement of transmitter and receiver
- Power control and switching of mobile stations

- The risk of interference grows with the increase of mobile communication standards, frequency bands and mobile stations.
- The operators need to strengthen communication and coordination on planning and operation of their stations.
- The equipment manufactures and operators are required to strictly comply with the technical specifications.

Potential Spectrum for Future IMT

New bands for

IMT

Future Plan in Frequency Bands below 6GHz

450-470MHz: Coordination with railway communication service

3400-3600MHz:Coordination with FSS

WRC-15 AI 1.1 Bands supported by China : coordination with FS,RLS,AMS

Other bands : possibly released by digital dividend or by FS migrating to high frequency bands, etc.

Global Trend of Band 450MHz

Figure 1: CDMA2000 in the 450-470MHz band

- 115 commercial operators in 60 countries
 15 operators in 13 countries scheduled to deploy in the next year
- Currently 115 CDMA450 operators in 60 countries.
 CDMA450 is gradually evolved to LTE450;
- 452.5-457.475MHz/ 462.5-467.475 MHz (3GPP band 31) is the most popular CDMA450 band.

LTE450

- The operator Ukko of Finland has brought the first LTE450 network into commercial use in August, 2014;
- Brazil and Russia have completed LTE450 trial ;
- According to GSA, more than 10 operators have carried out LTE450 trial.

Status of Band 450MHz in China

- Frequency band 450-470MHz is identified as the candidate band for IMT in radio regulations ;
- China Unicom was authorized to carry out LTE450 trial in 3 cities in China last year, which verified the wide coverage characteristic of band 450' s, especially in rural and remote areas.
- The co-existence of IMT with co-channel systems(such as railway, etc), and with adjacent broadcasting systems should be considered and resolved before frequency planning.

Global Trend of Band 3.5GHz

In 2013-2014, frequency management agencies such as the European CEPT, the British ofcom, Australian ACMA consulting, American FCC, Canadian IC and South African ICASA have investigated the TDD planning proposition in 3400-3600MHz.

Status of band 3.5GHz in China

- CHN28 stipulates that in this band, the quoted international footnotes on IMT application do not change the primary or secondary basis of existing services in the allocation table for mobile use.
- The co-existence of IMT with incumbent fixed satellite service should be considered and resolved.

WRC-15 AI 1.1 Bands in China

China launched revision of P.R.CHINA Regulations on the Radio Frequency Allocation

— On April 22nd 2016, the first meeting on revision of P.R.CHINA Regulations on the Radio Frequency Allocation was held in Beijing.

Proposals related to IMT was introduced and discussed:

Spectrum Band	Proposal		
3300-3400MHz	• ADD new CHN Footnote to bring IMT in		
4400-4500MHz	• ADD new CHN Footnote to bring IMT in		
4800-4990MHz	• ADD new CHN Footnote to bring IMT in		
•••••	•••••		

- Considering various incumbent radio systems, coordination groups for each band above were set up to further study the feasibility of revision.
- > The revision will be finalized by the end of 2016.

Digital Dividend

A global trend : terrestrial television digital switchover & digital dividend band freed up for IMT

1. Digital switchover enormously improves spectrum utilization efficiency

2. Digital dividend spectrum utilized by IMT generates more economy benefits

3. 700MHz band is the "GOLD" band for mobile industry

Global status of TV Analogue-Digital Switchover

- Based on ITU News Magazine (April 2015), by then ,most countries in North America and Europe and part of Asia have obsoleted analogue TV
- Most countries in Latin America and Asia-pacific region have made plans for finalizing digital switchover in 2015-2020
- Most developed countries (US, Germany, Sweden, Portuguesa, Spain, France, Japan, Netherland, Canada, etc.) have finalized analogue to digital switchover as early as 2012

Broadcasting Services in China

•	Frequency bands	: Medium wav	e 5	35-1606.5kHz	AM			
		Short wave	5	900-26100kHz	AM			
		Ultrashort wa	ave 8	8-108MHz	FM			
		Ultrashort wa	ave 4	8.5-798MHz	TV 48 Cha	nnels (CH5 not used)		
(VHF-I VHF-II	VHF-III		UHF-IV		UHF-V	١	
	48.5 92	167 223	470	566	606	798	f/MHz	
Г	BAND	FREQUENCY		CHANNEL	WAVEBAND			
	BAND I 48.5MHz-72.5M		.5MHz-72.5MHz	Hz DS1-DS3		VHF	VHF	
	BAND II 76MHz-92MH		76MHz-92MHz	lz DS4-DS5 VH		VHF		
	BAND III 167MHz-175MI		67MHz-175MHz	Hz DS6-DS12 HF				
	BAND IV	47	70MHz-566MHz		DS13-DS24	UHF		
$\setminus [$	BAND V	60	06MHz-798MHz		DS25-DS48	UHF	/	

Status of TV Analogue-Digital Switchover in China

 China released "Terrestrial Digital TV Overlay Network Development Plan" in late 2012, which demonstrated 3-steps strategy:

(Trainer information)

- Trainer: Fangjian
- E-mail:fangjian@srrc.org.cn

Department: The State Radio Monitoring Center

Address:SRMC, No.80 Beilishi Road Xicheng District,Beijing, P.R.China 100037 |

Photo:

Thanks!

中国信息通信研究院 http://www.caict.ac.cn