

NBTC – ITU Training on Building IoT solutions for e-applications

Session 6: IOT, Big Data and analytics

THE MEANING OF BIG?

Big Data: Big today, normal tomorrow

ITU-T Technology Watch Report November 2013

https://www.itu.int/dms_pub/itu-t/oth/23/01/T23010000220001PDFE.pdf

LET'S TRY TO MAKE IT BIG!

CASE STUDY: MONITORING AIR POLLUTION IN BANGKOK

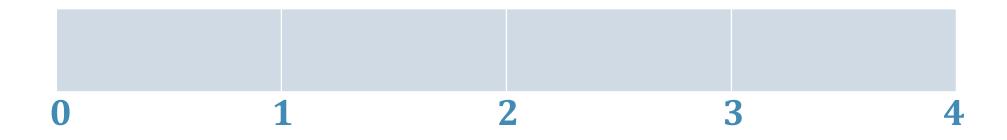
SCENARIO 1

AREA: $1,569 \text{ km}^2 \sim 40 \times 40 \text{ km}$

SPATIAL SAMPLING: 1 station every 100 meters

TEMPORAL SAMPLING: 1 measurement every 1 hour

DATA STRUCTURE: ~ 100 bytes [TIME, LON, LAT, STATION_ID, CO_2, SO_2, PM, ...]


~ 376 MB / day $1,569 \times (10 \times 10) \times 100 \times 24$

~ 137 GB / year 1,569 x (10 x 10) x 100 x 24 x 365

SCENARIO 1: HOW BIG IS IT?

* NOT REALLY!

SCENARIO 2

AREA: $1,569 \text{ km}^2 \sim 40 \times 40 \text{ km}$

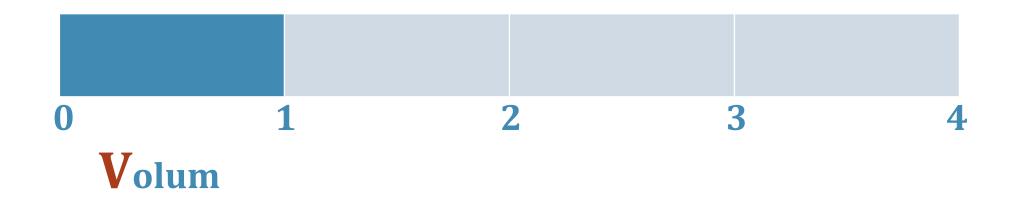
SPATIAL SAMPLING: 1 station every 50 meters

TEMPORAL SAMPLING: 1 measurement every 1 minute

DATA STRUCTURE: ~1000 bytes/measurement

[TIME, LON, LAT, STATION_ID, CO_2, SO_2, PM, ..., ..., ..., ...]

~ 903 GB / day $1,569 \times (20 \times 20) \times 24 \times 60 \times 1000$


~ 329 TB / year 1,569 x (20 x 20) x 24 x 60 x 1000 x 365

SCENARIO 2: HOW BIG IS IT?

*Only use case justify accessing a year of data

SCENARIO 3

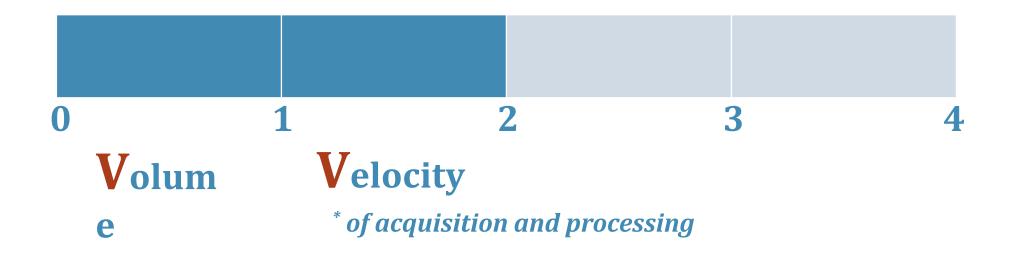
AREA: $1,569 \text{ km}^2 \sim 40 \times 40 \text{ km}$

SPATIAL SAMPLING: 1 station every 50 meters

TEMPORAL SAMPLING: 1 measurement every 1 second

DATA STRUCTURE: ~1000 bytes/measurement

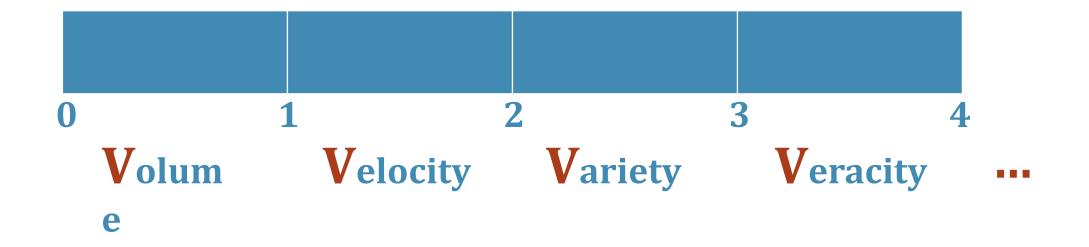
[TIME, LON, LAT, STATION_ID, CO_2, SO_2, PM, ..., ..., ..., ...]


~ 54 TB / day $1,569 \times (20 \times 20) \times 24 \times 3600 \times 1000$

~ 20 PB / year 1,569 x (20 x 20) x 24 x 3600 x 1000 x 365

SCENARIO 3: HOW BIG IS IT?

SCENARIO 4


IDEM AS SCENARIO 3 ~54 TB / day and ~20 PB /year

- + CROWD-SOURCED DATA citizen science, third party institutions, ...
- + WEB APP. DATA COLLECTION perception on air quality (good, moderate, poor)
- + SENTIMENT ANALYSIS ON SOCIAL NETWORKS
- + IMAGE CLASSIFICATION (SATELLITE IMAGERY, CAMERAS, ...)

SCENARIO 4: HOW BIG IS IT?

CHECK LIST

Different problems | different solutions

USE CASE FIRST *

- WHAT IS THE USE CASE?
- WHAT DECISION WE WANT TO MAKE?
- WHICH DATA WILL SUPPORT THAT DECISION?

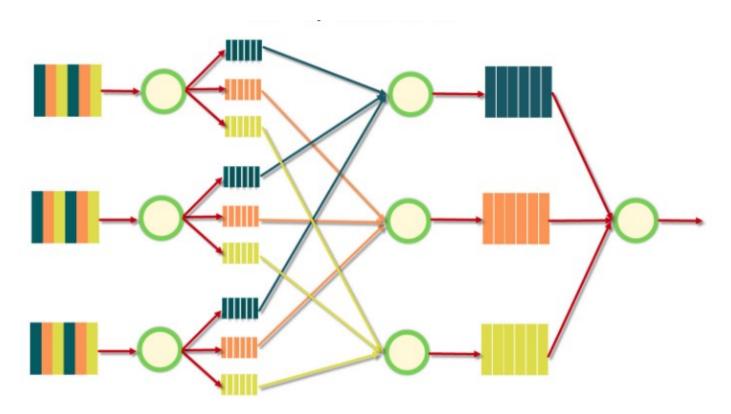
^{*} as opposed to "let's collect everything we can, then we will see what we can do with it" syndrom.

DOMAIN KNOWLEDGE IS A KEY INPUT

- DOMAIN KNOWLEDGE PROVIDES PERSPECTIVE AND INSIGHTS
- MIGHT DOWNSIZE CONSIDERABLY THE AMOUNT OF DATA NEEDED

REAL-TIME vs. BATCH PROCESSING

- DOES YOUR USE CASE REQUIRE PROCESSING HISTORICAL DATA REAL-TIME?
- DOES CLASSICAL DRILL-DOWN ROLL-UP STRATEGY ADDRESS YOUR PROBLEM?


TECHNOLOGY OVERVIEW

Evading the hype

CLASSICAL DIVIDE & CONQUER APPROACH

https://blog.sqlauthority.com/2013/10/09/big-data-buzz-words-what-is-mapreduce-day-7-of-21/

USE CASE: # OF PARTICIPANTS BY MOBILE OS USED

KEY: ANDROID

VALUE: 12

KEY: iOS

VALUE: 6

. . .

KEY: OTHERS

VALUE: 3

NAIVE IMPLEMENTATION

VS.

DIVIDE & CONQUER | PARALLELIZING | MapReduce*

^{*}ROLE PLAYING: MAKING CONRETE THE MAP-SHUFFLE-REDUCE PHASES

KEY: ANDROID

VALUE:

KEY: iOS

VALUE:

KEY: OTHERS

VALUE:

WHAT ABOUT VELOCITY, VARIETY, ...?

- BATCH vs. STREAM PROCESSING
- VARIETY OF DBMS TECHNOLOGIES
- PIPELINES (DATA MOVING AROUND)
- VARIETY OF PROGRAMMING PARADIGMS
- SCALABILITY

CANONICAL TECHNOLOGICAL ECOSYSTEM/STACK

- **CLUSTERED FILE SYSTEM:** HDFS, GFS, ...
- "DIVIDE & CONQUER": Hadoop, Spark, ...
- "FLAT FILE STORAGE" | API: Simple Storate Service (S3), ...
- **RDBMS:** PostGres, ...
- NoSQL DB: MongoDB, DynamoDB, ...
- "PREPARE DATA FOR DATA ANALYTICS" | DATA WAREHOUSE: Redshift, ...
- "MOVING DATA AROUND": AWS Data pipeline, ...
- STREAMING PROCESSING: AWS Kinesis, Spark stream, ...
- BI/ANALYTICS CLIENT PLATFORM: JasperSoft, Python, R, SAS, Tableau...

LEARNING RESOURCES

- COURSERA: https://www.coursera.org/courses?languages=en&query=big+data
- PLURALSIGHT: https://www.pluralsight.com/search?q=big%20data
- UDACITY: https://www.udacity.com/courses/all

•

THANK YOU

