ITU workshop on enhancing access to submarine cables for Pacific Island countries Session 2: Licensing frameworks for submarine cable landings

Enhancing access to submarine cables for Pacific Island Countries

Session 2A: Licensing frameworks for submarine cable landings

Suva Fiji 31st July–3rd August, 2017 Matthew O'Rourke

ITU workshop on enhancing access to submarine cables for Pacific Island countries

Session 2: Licensing frameworks for submarine cable landings

Session 2A: Licensing frameworks for submarine cable landings

Agenda

- Categories of ownership of submarine cable systems
- Relevant segments of the cable system for regulators
- Short video showing how cables are landed
- Telecoms licensing options and implications

Club cables

- From the era of national telecommunications monopolies
- Cable financed and constructed by small partnerships of government-owned telecommunications operators

E.g. AT&T, BT, PTTs

- In-house construction expertise
 - E.g. AT&T's Submarine Systems Inc (now TE Subcom)
 - E.g. British Telecom Marine (now Global Marine Systems)
- Each club member had the exclusive right within its particular national jurisdiction to use the cable capacity
- Designed to meet the international connectivity/capacity requirements of the club members

Consortium cables

- Consortium cables are the modern (post-liberalisation) equivalent of club cables
- Cable financed by consortia of telecom operators
- Construction outsourced to specialist suppliers

E.g. Tyco Electronics, Alcatel-Lucent

- Designed to meet the international connectivity/capacity requirements of the consortium members
- Members enter into a Construction and Maintenance Agreement (CMA)

Private cables

- Cable financed by private investors
 - Investors may not be telecom operators at all
 - E.g. SEACOM
- Wholesale-only business
 - Designed to meet the international connectivity/capacity requirements of the wholesale customers

Indefeasible Rights of Use

- Capacity on consortium cables is divided into Minimum Investment Units (MIUs) and sold in terms of Indefeasible Rights of Use (IRU)
- IRUs are sold through Capacity Purchase Agreements (CPAs)
- IRUs includes rights and obligations commonly associated with ownership
- Members determine membership and prices of IRU
- Capacity on private cables may be sold in terms of an IRU but the rights and obligations are very different

ITU training workshop on licensing and access price regulation of CLS operators Session 2: Licensing frameworks for submarine cable landings

Capacity structure and terminology

ITU training workshop on licensing and access price regulation of CLS operators

Session 2: Licensing frameworks for submarine cable landings

Three key parts of a cable system

Licensing of the Cable Landing Station

- The national jurisdiction includes both the dry and the wet segment within the 12km territorial waters
- The first task is to persuade the submarine cable operator to come to this demarcation point:
 - > A national spur will be needed from the main cable
 - This will be a multi-million dollar investment
 - National investment in the cable consortium may be needed or (for private cable) some financial inducement.
- The licensing task concerns the cable landing station (CLS) and the wet segment in territorial waters:
 - Who is going to own and operate this?
 - What regulatory conditions will apply?

Ownership of the Cable Landing Station

- Ownership and operation of the CLS may be:
 - By the submarine cable provider itself
 - By one of the national telecom operators (typically the fixed incumbent)
 - > By a consortium of national telecoms companies
 - By a separate private company independent of both the submarine cable and the national operators.

Discuss in your groups the merits and disadvantages of each system – which would you consider to be:

- a) the most efficient solution?
- b) the most pro-competitive solution?

CLS licensing requirements

- Many different approaches
 - > May fit within the standard unified licence regime
 - May require a special "submarine cable licence"
 - May require multiple licences
- A licence that covers the dry segment would typically also cover the relevant portion of the wet segment

> This may be unnecessary in some scenarios

 A licence that does not distinguish between international and national facilities/service would typically also authorise national backhaul infrastructure

> This is not always the case in practice

Typical CLS licensing requirements

- Licence term = lifetime of the cable (typically 15 years), with renewal option.
- Reporting, monitoring and accounting requirements.
- Open access obligations
- Control and conflicts of interest
- Tariff regulation may be cost-based?
- Licence fees.

ITU training workshop on licensing and access price regulation of CLS operators Session 2: Licensing frameworks for submarine cable landings

How would a CLS be license in your country?

One stop shop

- Many other licences and authorisations will typically be required
 - > E.g. maritime, environmental, ROW, construction, power
- A "one-stop shop" can simplify and speed up the process
 > E.g. China's State Oceanic Administration
- Alternatively the telecom regulator can act as a coordinator
 E.g. ACMA in Australia, OFCA in Hong Kong

