# Spectrum Supporting IoT





Dr. Azim Fard, DG RF Spectrum Planning and Licensing, Iran

ITU Asia-Pacific CoE Face to Face Training Programme IoT Technologies and Applications for Smart Cities 29 October – 02 November 2018 ALTTC, Ghaziabad, India

# Technical overview of the IoT, as defined by ITU-T Y.2060



hysical object be represented





एल्ट सेंटर

201 Stanley

## Technologies for Wireless IoT Connectivity, by Spectrum Type and Scope

АЩС

एल्ट सेंटर

RT Faulty



## Some of the Wireless Sensor Network Technologies in IoT



| Features         | LORAWAN                        | SIGFOX                                              | INGENU                  | NB-IoT             |
|------------------|--------------------------------|-----------------------------------------------------|-------------------------|--------------------|
| Modulation       | CSS<br>(Chirp Spread Spectrum) | UNB DBPSK(UL), GFSK(DL)<br>(UNB: Ultra Narrow Band) | RPMA-DSSS(UL), CDMA(DL) | QPSK               |
| Band             | SUB-GHz ISM:EU (433MHz,        | SUB-GHz ISM:EU                                      | ISM 2.4GHz              | Licensed LTE       |
|                  | 868MHz), US (915MHz), Asia     | (868MHz) <i>,</i>                                   |                         | bandwidth          |
|                  | (430MHz)                       | US(902MHz)                                          |                         |                    |
| Data rate        | 0.3-37.5 kbps (LORa), 50       | 100 bps(UL), 600 bps(DL)                            | 78kbps (UL), 19.5       | DL:234.7 kbps;     |
|                  | kbps (FSK) 50 kbps (LORa),     |                                                     | kbps(DL)                | UL:204.8 kbps      |
| Bandwidth        | 500 to 125 kHz                 | 100 Hz                                              | 1000 kHz                | 200 kHz            |
| Range            | 5 – 20 km                      | 10 – 40 km                                          | 2 - 8 km                | 1 – 10 km          |
| FEC              | YES                            | NO                                                  | YES                     | YES                |
| MAC              | unslotted ALOHA                | unslotted ALOHA                                     | CDMA-like               | slotted aloha      |
| Topology         | star of stars                  | star                                                | star                    | Star               |
| Adaptive Data    | YES                            | NO                                                  | YES                     | NO                 |
| Rate             |                                |                                                     |                         |                    |
| Authentication & | AES 128b                       | encryption not                                      | 16B hash, AES 256b      | EEA EPS Encryption |
| encryption       |                                | supported                                           |                         | Algorithm          |
| SLA support      | NO                             | NO                                                  | NO                      | YES                |
| Localization     | YES-TDOA                       | NO                                                  | NO                      | NO                 |
| Capex            | Low                            | high                                                | medium                  | High               |
| Opex             | Low                            | Low                                                 | medium                  | High               |



## **Comparing SigFOX, LoRa and NB-IoT**



Source: K. Mekki et all, A comparative study of LPWAN technologies for large-scale IoT deployment, Science Direct, Dec. 2017

## Common Spectrum for Non-IMT IoT So-called ISM Band



ISM Bands: Just in regulatory point of view

|                | ITU RR No. 5.138                                                                                                                         | ITU RR No. 5.150                                                                   |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Below<br>1 GHz | 6 765-6 795 kHz, 433.05-434.79 MHz in Region 1 except in the countries mentioned in No. <b>5.280</b> ,                                   | 13 553-13 567 kHz, 26 957-27 283 kHz,<br>40.66-40.70 MHz, 902-928 MHz in Region 2, |
| 1-6<br>GHz     | _                                                                                                                                        | 2 400-2 500 MHz,<br>5 725-5 875 MHz                                                |
| Above 6<br>GHz | 61-61.5 GHz,<br>122-123 GHz<br>244-246 GHz                                                                                               | 24-24.25 GHz                                                                       |
|                | <ul> <li>Basic requirements: shared among all, protection</li> <li>Popularly utilized ranges by IoT: 433.05 2400 – 2483.5 MHz</li> </ul> | no right to claim for<br>5-434.79 MHz, 902-928 MHz,                                |

# Common Spectrum for Non-IMT IoT Non-ISM Band



 In regulatory point of view: All frequencies non-specifically if they radiate below threshold level



# Common Spectrum for Non-IMT IoT Non-ISM Band

• Frequency bands may be identified by the Regulators:

Source: ETSI TR 103 055 V1.1.1 (2011-09)

एल्ट सेंटर

**STERON** 



CoE India Node, 29 Oct. to 02 Nov. 2018

## Duty Cycle – Radiated Power Equilibrium Criteria in the 865 MHz Band

ALTC एल्ट सेंटर

finistry of IC

XI Indu



| Frequency Band                                                | Applications                                                          | Maximum radiat<br>(e.r.p.)/power spec                | Maximum radiated power<br>(e.r.p.)/power spectral density |          | nel<br>ng                               | Transmitted<br>duty cycle                                                                                     |
|---------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------|----------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------|
| 870 MHz to 873 MHz                                            | All                                                                   | 25 mW                                                |                                                           | None     |                                         | 1 % duty cycle or<br>LBT +AFA                                                                                 |
| 873 + 0,2n MHz;<br>1 ≤ n ≤ 14                                 | All                                                                   | 100 mW                                               |                                                           | 200 kHz  |                                         | See table 5                                                                                                   |
| Frequency Band (G6)                                           | Power                                                                 | Duty Cycle                                           | Channel b                                                 | andwidth |                                         | Remarks                                                                                                       |
| 873 MHz to 876 MHz<br>specific SRDs.<br>Short Burst Telegrams | ≤ 1 mW e.r.p.<br>(to be studied)<br>≤ 25 mW e.r.p.<br>≤ 100 mW e.r.p. | Up to 5 % D.C.<br>Up to 1 % D.C.<br>Up to 0,1 % D.C. | No channel                                                | spacing  | Narro<br>DSSS<br>perm<br>FHSS<br>time o | w/wideband,<br>S with 0,1 % duty cycle<br>itted.<br>S duty cycle and T <sub>on</sub><br>of hops to be studied |



## Spectrum Issue in 865 MHz band

|                           |                                     | Un-naired           |                                   |                            |                                      |
|---------------------------|-------------------------------------|---------------------|-----------------------------------|----------------------------|--------------------------------------|
| Frequency<br>arrangements | Mobile station<br>transmitter (MHz) | Centre gap<br>(MHz) | Base station<br>transmitter (MHz) | Duplex<br>separation (MHz) | arrangements<br>(e.g. for TDD) (MHz) |
| A1                        | 824-849                             | 20                  | 869-894                           | 45                         | None                                 |
| A2                        | 880-915                             | 10                  | 925-960                           | 45                         | None                                 |
| A3                        | 832-862                             | 11                  | 791-821                           | 41                         | None                                 |
| A4                        | 698-716                             | 12                  | 728-746                           | 30                         | 716-728                              |
|                           | 776-793                             | 13                  | 746-763                           | 30                         |                                      |
| A5                        | 703-748                             | 10                  | 758-803                           | 55                         | None                                 |
| A6                        | None                                | None                | None                              |                            | 698-806                              |
| A7                        | 703-733                             | 25                  | 758-788                           | 55                         | None                                 |
| A8                        | 698-703                             | 50                  | 753-758                           | 55                         | None                                 |
| A9                        | 733-736                             | 52                  | 788-791                           | 55                         | None                                 |
| A10                       | External                            | —                   | 738-758                           | _                          | None                                 |
| A11 (harmonized           | 703-733                             | 25                  | 758-788                           | 55                         | None                                 |
| with A7 and A10)          | External                            | _                   | 738-758                           | _                          |                                      |
|                           |                                     |                     |                                   |                            |                                      |



Source: ITU-R Rec. M.1036-5



## **IoT Spectrum in 2.4 GHz**



Source: RPMA Technology for the Internet of Things, Connecting Like Never Before, Genu



## **NB-IoT and Designated Bands**

#### Bands that are Currently Designated by 3GPP for Use by NB-IoT

| NB-IOT<br>Operating | U<br>BS F           | Jplir<br>XX, l | ık<br>JE TX          | Dov<br>BS TX               | vnlin<br>(, UE   | k<br>RX |
|---------------------|---------------------|----------------|----------------------|----------------------------|------------------|---------|
| Band                | F <sub>UL_low</sub> | , –            | F <sub>UL_high</sub> | <b>F</b> <sub>DL_low</sub> | – F <sub>c</sub> | DL_high |
| 1                   | 1920                | _              | 1980                 | 2110                       | _                | 2170    |
| 3                   | 1710                | _              | 1785                 | 1805                       | _                | 1880    |
| 5                   | 824                 | _              | 849                  | 869                        | _                | 894     |
| 8                   | 880                 | —              | 915                  | 925                        | _                | 960     |
| 12                  | 699                 | _              | 716                  | 729                        | _                | 746     |
| 13                  | 777                 | _              | 787                  | 746                        | _                | 756     |
| 17                  | 704                 | _              | 716                  | 734                        | -                | 746     |
| 19                  | 830                 | _              | 845                  | 875                        | -                | 890     |
| 20                  | 832                 | _              | 862                  | 791                        | _                | 821     |
| 26                  | 814                 | _              | 849                  | 859                        | _                | 894     |
| 28                  | 703                 | _              | 748                  | 758                        | _                | 803     |

#### **Different Types of NB-IoT**

| NB-IoT                                                         | Stand<br>alone | In band              | Guard Band                                     |
|----------------------------------------------------------------|----------------|----------------------|------------------------------------------------|
| UE Channel<br>bandwidth BW <sub>Channel</sub><br>[kHz]         | 200            | 200                  | 200                                            |
| BS Channel<br>bandwidth BW <sub>Channel</sub><br>[kHz]         | 200            | LTE<br>channel<br>BW | LTE channel<br>BW,<br>FFS for 1.4<br>and 3 MHz |
| Transmission bandwidth configuration N <sub>RB</sub>           | 1              | 1                    | 1                                              |
| Transmission bandwidth configuration $N_{\text{tone 15kHz}}$   | 12             | 12                   | 12                                             |
| Transmission bandwidth configuration $N_{\text{tone 3.75kHz}}$ | 48             | 48                   | 48                                             |

Definition of Channel Bandwidth and Transmission Bandwidth Configuration for one NB-IoT carrier





Downlink: OFDMA - sub-carriers: 15 kHz Uplink: QPSK

Source: 3GPP TR 36.802 V13.0.0 (2016-06) and

K. Mekki et all, A comparative study of LPWAN technologies for large-scale IoT deployment, Science Direct, Dec. 2017

# **EC-GSM IoT**

#### (Extended coverage GSM IoT)



- EC-GSM is a standard-based Low Power Wide Area (LPWA) technology
- This technology can be activated by a simple software update on existing GSM networks (repetition and encoding enhancement)
- The signal quality could be increased 20 dB which is about 7 times more communication range





## **Comparing Non-IMT and IMT IoT**

|                                       |                         |                        | Cat-M1 =                 |                                      |                          |                                                         |                           |
|---------------------------------------|-------------------------|------------------------|--------------------------|--------------------------------------|--------------------------|---------------------------------------------------------|---------------------------|
|                                       |                         | 20100-012-0            | = enhanced MTC           | =                                    |                          |                                                         |                           |
|                                       | Cat-1                   | Cat-0                  | eMTC                     | NB-IoT                               | EC-GSM                   | LoRa                                                    | Sigfox                    |
| Specification                         | 3GPP                    | 3GPP                   | 3GPP                     | 3GPP                                 | 3GPP                     | Open                                                    | Private                   |
| Spectrum                              | Licensed                | Licensed               | Licensed                 | Licensed                             | Licensed                 | Unlicensed                                              | Unlicensed                |
| Channel BW                            | 1.4MHz to<br>20MHz      | 1.4MHz to<br>20MHz     | 1.4MHz                   | 180KHz                               | 200KHz                   | 7.8 to 500KHz                                           | 100Hz                     |
| System BW                             | 1.4MHz to<br>20MHz      | 1.4MHz to<br>20MHz     | 1.4MHz                   | 180KHz                               | 1.4MHz                   | 125KHz                                                  | 200KHz                    |
| Peak Data Rate                        | UL: 5Mbps<br>DL: 10Mbps | UL: 1Mbps<br>DL: 2Mbps | UL: 1Mbps<br>DL: 800kbps | UL:<br>204.8kbps<br>DL:<br>234.7kbps | UL: 74kbps<br>DL: 74kbps | 180bps~37.5kbps                                         | UL: 100bps<br>DL: 600bps  |
| Max. number of<br>Messages per<br>day | unlimited               | unlimited              | unlimited                | unlimited                            | unlimited                | 50000(BTS)                                              | 140(Device)<br>50000(BTS) |
| Device Peak<br>Tx Power               | 23dBm                   | 23dBm                  | 23dBm                    | 23dBm                                | 26dBm                    | 14dBm                                                   | 14dBm                     |
| MCL (Maximum<br>Coupling Loss)        | 144dB                   | 144dB                  | 156dB                    | 164dB                                | 164dB                    | UL: 156dB<br>DL:<br>168(SF12, BW7.8)<br>132(SF6, BW125) | UL: 156dB<br>DL: 147dB    |
| Device Power<br>Consumption           | Medium                  | Medium                 | Low-Medium               | Low                                  | Low                      | Low-Medium                                              | Low                       |

## Advanced Techniques to Extend LTE IoT Coverage

एल्ट सेंटर

**KT Fools** 



Coverage



## IMPROVED COVERAGE (UP TO 20 DB)

#### EXTENDED COVERAGE MODE

EXTENDS COVERAGE BY UP TO +20 dB ACHIEVED BY:

- Repetition of transmissions
- New control channels



## **Other Improvement of 3GPP**





- Network and protocol improvements:
  - Dedicated Core Networks (DECOR)
  - Architecture Enhancements for Services capability exposure (AESE)
  - Optimization to support High Latency Communication (HLCom)
  - Group Based Enhancements (GROUPE)
  - Monitoring Enhancements (MONTE)
  - Architecture Enhancements for Cellular Internet of Things (CIoT)

# CELLULAR FOR MASSIVE IOT

Meeting diversity of use case requirements







## Massive IoT (MIoT)

#### **Refined scenarios and requirements of Massive MIMO**

| Availability              | 99.9%                                                                    |
|---------------------------|--------------------------------------------------------------------------|
| Device density            | 1 000 000 devices/km <sup>2</sup>                                        |
| Traffic volume per device | 125 bytes message per second                                             |
| Battery life              | 10 years (assuming 5 Watts-hour battery and<br>restricted traffic model) |

Architecture and protocol enhancements for MIoT and Critical IoT to be realized in Release 16 in 2020.



Source: LTE Progress Leading to the 5G Massive Internet of Things, 3GPP Enhancement Up To Release 14, Dec. 2017

## **Evolution of Mobile Communications - up to 5G**





## **ITS 5.9 GHz Spectrum**



# Separation distance is necessary with earth stations (more than 33 km)

Reference: Planning for intelligent transport systems, ACMA, Oct. 2009

| Region 1                                                                                                                                                                   | Region 2                                                                             | Region 3                                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| 5 725-5 830<br>FIXED-SATELLITE<br>(Earth-to-space)<br>RADIOLOCATION<br>Amateur<br>5 150 5 451 5 453 5 455                                                                  | 5 725-5 830<br>RADIOLOCATION<br>Amateur                                              |                                                                                        |
| 5.150 5.451 5.453 5.455<br>5 830-5 850<br>FIXED-SATELLITE<br>(Earth-to-space)<br>RADIOLOCATION<br>Amateur<br>Amateur-satellite (space-to-Earth)<br>5 150 5 451 5 453 5 455 | 5 830-5 850<br>RADIOLOCATION<br>Amateur<br>Amateur-satellite (spac                   | ce-to-Earth)                                                                           |
| 5 850-5 925<br>FIXED<br>FIXED-SATELLITE<br>(Earth-to-space)<br>MOBILE                                                                                                      | 5 850-5 925<br>FIXED<br>FIXED-SATELLITE<br>(Earth-to-space)<br>MOBILE<br>Amateur     | 5 850-5 925<br>FIXED<br>FIXED-SATELLITE<br>(Earth-to-space)<br>MOBILE<br>Radiolocation |
| 5.150<br>5 925-6 700                                                                                                                                                       | Radiolocation<br>5.150<br>FIXED 5.457<br>FIXED-SATELLITE (Earth-to-<br>MOBILE 5.457C | 5.150<br>-space) 5.457A 5.457B                                                         |
|                                                                                                                                                                            | 5.149 5.440 5.458                                                                    |                                                                                        |

## Pre-WRC-19 Estimation for IMT-2020 WRC-15 CPM Text for A.I. 1.1 (below 6 GHz)



RATG: Radio access technique Group

• ITU-R Recommendation M.1768-1 was used

|                              | Total spectrum<br>requirements<br>for RATG 1 | Total spectrum<br>requirements<br>for RATG 2 | Total spectrum<br>requirements<br>RATGs 1 and<br>2 |
|------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------------|
| Lower user density settings  | 440 MHz                                      | 900 MHz                                      | 1 340 MHz                                          |
| Higher user density settings | 540 MHz                                      | 1 420 MHz                                    | 1 960 MHz                                          |

RATG 1 (i.e. pre-IMT, IMT-2000, and its enhancements) RATG 2 (i.e. IMT-Advanced)

 Above forecast assumed that are relevant to spectrum requirement of Advanced-IMT below 6 GHz

# Reference of the second second

## Frequency Band Available for 5G below 6 GHz

• Frequency bands that are currently in ecosystem of wideband/broadband networks, according to ITU RR Article 5 (reach to 1662 MHz)



#### 5G will launch commercially from 2019



IoT Technologies and Applications for Smart Cities, ITU ASP CoE India Node, 29 Oct. to 02 Nov. 2018



एल्ट सेंटर

### 3GPP 5G New Radio (NR) Bands (by 2018 June)

| NR operating | Uplink (UL) operating | Downlink (DL) operating | Duplex |
|--------------|-----------------------|-------------------------|--------|
| band         | band                  | band                    | Mode   |
| n1           | 1920 MHz – 1980 MHz   | 2110 MHz – 2170 MHz     | FDD    |
| n2           | 1850 MHz – 1910 MHz   | 1930 MHz – 1990 MHz     | FDD    |
| n3           | 1710 MHz – 1785 MHz   | 1805 MHz – 1880 MHz     | FDD    |
| n5           | 824 MHz – 849 MHz     | 869 MHz – 894 MHz       | FDD    |
| n7           | 2500 MHz – 2570 MHz   | 2620 MHz - 2690 MHz     | FDD    |
| n8           | 880 MHz – 915 MHz     | 925 MHz – 960 MHz       | FDD    |
| n20          | 832 MHz – 862 MHz     | 791 MHz – 821 MHz       | FDD    |
| n28          | 703 MHz – 748 MHz     | 758 MHz – 803 MHz       | FDD    |
| n38          | 2570 MHz – 2620 MHz   | 2570 MHz – 2620 MHz     | TDD    |
| n40          | 2300 MHz – 2400 MHz   | 2300 MHz - 2400 MHz     | TDD    |
| n41          | 2496 MHz – 2690 MHz   | 2496 MHz - 2690 MHz     | TDD    |
| n51          | 1427 MHz – 1432 MHz   | 1427 MHz – 1432 MHz     | TDD    |
| n66          | 1710 MHz – 1780 MHz   | 2110 MHz - 2200 MHz     | FDD    |
| n70          | 1695 MHz – 1710 MHz   | 1995 MHz – 2020 MHz     | FDD    |
| n71          | 663 MHz – 698 MHz     | 617 MHz – 652 MHz       | FDD    |
| n75          | N/A                   | 1432 MHz – 1517 MHz     | SDL    |
| n76          | N/A                   | 1427 MHz – 1432 MHz     | SDL    |
| n77          | 3300 MHz - 4200 MHz   | 3300 MHz - 4200 MHz     | TDD    |
| n78          | 3300 MHz - 3800 MHz   | 3300 MHz - 3800 MHz     | TDD    |
| n79          | 4400 MHz - 5000 MHz   | 4400 MHz - 5000 MHz     | TDD    |
| n80          | 1710 MHz – 1785 MHz   | N/A                     | SUL    |
| n81          | 880 MHz – 915 MHz     | N/A                     | SUL    |
| n82          | 832 MHz – 862 MHz     | N/A                     | SUL    |
| n83          | 703 MHz – 748 MHz     | N/A                     | SUL    |
| n84          | 1920 MHz – 1980 MHz   | N/A                     | SUL    |
| n86          | 1710 MHz – 1780 MHz   | N/A                     | SUL    |

| Frequency range<br>designation | Corresponding frequency rang |
|--------------------------------|------------------------------|
| FR1                            | 450 – 6000 MHz               |
| FR2                            | 24250 – 52600 MHz            |
| The frequency ran              | roc in 2CDD Poloaco 15 for   |

The frequency ranges in 3GPP Release 15 for 5G NR designed for the frequency ranges FR1 and FR2

| NR operating<br>band | Uplink (UL) and<br>Downlink (DL) | Duplex<br>Mode |
|----------------------|----------------------------------|----------------|
| n257                 | 26500 MHz - 29500 MHz            | TDD            |
| n258                 | 24250 MHz - 27500 MHz            | TDD            |
| n260                 | 37000 MHz - 40000 MHz            | TDD            |
| n261                 | 27500 MHz - 28350 MHz            | TDD            |

5G NR bands in FR2

The most harmonized bands are specified as 5G NR bands by 3GPP

5G NR bands in FR1

Some UE RF and RRM requirements for NR CA and mm wave bands are not finished yet, to be completed by 2018.12



### All spectrum will support 5G C-band and mmWave are the leading 5G bands



mmWave: The 24.25-29.5 & 37.0-43.5 GHz are the most promising high frequency ranges for 5G early commercialization globally, at least 800 – 1000 MHz channel bandwidth per 5G network for initial deployment



### Sub 6 GHz bands for basic capacity & Coverage mmWave for Ultra High Capacity





 Massive MIMO for capacity & coverage

#### Sub 3GHz:

Connectivity & coverage & mobility

#### > mmWave:

- Capacity boosting for hotspot
- Home broadband access
- Self-Backhaul for easy site acquisition





#### C-band: continuous 100 MHz per operator becoming the trend

C-band potential 100 MHz/operator

# ATTC yee tot

4G bands of 2.6GHz and 2.3GHz



LTE/NR UL sharing facilities 3.5 GHG & 1.8 GHz Co-Site provides similar coverage using MIMO technology



## WRC-19 Agenda Item 1.13

#### (summary of ) Resolves of Resolution 238(WRC-15)



- 1 To determine the spectrum needs for the terrestrial component of IMT in the frequency range between 24.25 GHz and 86 GHz, taking into account:
  - technical and operational characteristics of terrestrial IMT, including the evolution of IMT through advances in technology and spectrally efficient techniques;
  - deployment scenarios envisaged for IMT-2020 systems and related requirements of high data traffic;
  - the time-frame in which spectrum would be needed;
- 2 to conduct sharing and compatibility studies<sup>1</sup>, taking into account the protection of services to which the band is allocated on a primary basis, for the bands:
  - 24.25-27.5 GHz<sup>2</sup>, 37-40.5 GHz, 42.5-43.5 GHz, 45.5-47 GHz, 47.2-50.2 GHz, 50.4-52.6 GHz, 66-76 GHz and 81-86 GHz, which have allocations to the mobile service on a primary basis; and
  - 31.8-33.4 GHz, 40.5-42.5 GHz and 47-47.2 GHz, which may require additional allocations to the mobile service on a primary basis,
- <u>1</u> Including studies with respect to services in adjacent bands, as appropriate.
- 2 When conducting studies in the band 24.5-27.5 GHz, to take into account the need to ensure the protection of existing earth stations and the deployment of future receiving earth stations under the EESS (space-to-Earth) and SRS (space-to-Earth) allocation in the frequency band 25.5-27 GHz.

#### *Resolve* 2 Spectrums of Resolution 238(WRC-15)

AUIC एल्ट सेंटर

> REARY of IC XI Insity







## Partitioning WRC-19 AI. 1.13 Frequency Bands

| Res. 238                     | Frequency ranges, GHz | Country Comment                              |  |  |  |  |
|------------------------------|-----------------------|----------------------------------------------|--|--|--|--|
|                              | 24.25-27.5            | Lower parts, early implementation            |  |  |  |  |
|                              | 37-40.5               | Lower parts, early implementation            |  |  |  |  |
|                              | 42.5-43.5             | Lower parts, early implementation            |  |  |  |  |
| Resolves 2,<br>first bullet  | 45.5-47               | Upper parts, less interest for sharing study |  |  |  |  |
|                              | 47.2-50.2             | Upper parts, less interest for sharing study |  |  |  |  |
|                              | 50.4-52.6             | Upper parts, less interest for sharing study |  |  |  |  |
|                              | 66-76                 | Upper parts, less interest for sharing study |  |  |  |  |
|                              | 81-86                 | Upper parts, less interest for sharing study |  |  |  |  |
| Resolves 2,<br>second bullet | 31.8-33.4             | Lower parts, early implementation            |  |  |  |  |
|                              | 40.5-42.5             | Lower parts, early implementation            |  |  |  |  |
|                              | 47-47.2               | Upper parts, less interest for sharing study |  |  |  |  |

## Calculated Spectrum Needs for frequency ranges 24.25 to 86 GHz



|                                   | Examples | Associated conditions for different examples | Spectrum<br>needs in total<br>(GHz) | Spectrum needs (GHz)<br>per frequency range |  |  |  |  |
|-----------------------------------|----------|----------------------------------------------|-------------------------------------|---------------------------------------------|--|--|--|--|
|                                   |          | Overcrowded, dense                           |                                     | 3.3 (24.25-33.4GHz range)                   |  |  |  |  |
| Application-<br>based<br>approach |          | urban and urban                              | 18.7                                | 6.1 (37-52.6GHz range)                      |  |  |  |  |
|                                   | 1        | areas                                        |                                     | 9.3 (66-86 GHz range)                       |  |  |  |  |
|                                   | Ŧ        |                                              |                                     | 2.0 (24.25-33.4GHz range)                   |  |  |  |  |
|                                   |          | Dense urban and<br>urban areas               | 11.4                                | 3.7 (37-52.6GHz range)                      |  |  |  |  |
|                                   |          |                                              |                                     | 5.7 (66-86 GHz range)                       |  |  |  |  |
|                                   |          |                                              |                                     | 0.67 (24.25-33.4GHz range)                  |  |  |  |  |
|                                   |          | Highly crowded area                          | 3.7                                 | 1.2 (37-52.6GHz range)                      |  |  |  |  |
|                                   | 2        |                                              |                                     | 1.9 (66-86 GHz range)                       |  |  |  |  |
|                                   | 2        |                                              |                                     | 0.33 (24.25-33.4GHz range)                  |  |  |  |  |
|                                   |          | Crowded area                                 | 1.8                                 | 0.61 (37-52.6GHz range)                     |  |  |  |  |
|                                   |          |                                              |                                     | 0.93 (66-86 GHz range)                      |  |  |  |  |

# Calculated Spectrum Needs for frequency ranges 24.25 to 86 GHz

एल्ट सेंटर



# Calculated/Reported Spectrum Needs for frequency ranges 24.25 to 86 GHz

एल्ट सेंटर

**KT Fools** 

|                                                      | Examples | Associated conditions<br>for different examples | Spectrum<br>needs in<br>total<br>(GHz) | Spectrum needs (GHz)<br>per frequency range |
|------------------------------------------------------|----------|-------------------------------------------------|----------------------------------------|---------------------------------------------|
| Technical performance-<br>based approach<br>(Type 2) | _        | Dense urban micro                               |                                        | 5.8-7.7<br>(24.25-43.5GHz range)            |
|                                                      |          | Indoor hotspot                                  | 14.8-19.7                              | 9-12<br>(24.25-43.5 GHz and                 |
|                                                      |          |                                                 |                                        | 45.5-86 GHz range)                          |
| Information from some<br>countries based on          |          |                                                 | 7 16                                   | 2-6<br>(24.25-43.5 GHz range)               |
| their national                                       | -        | _                                               | 7-10                                   | 5-10                                        |
| considerations                                       |          |                                                 |                                        | (43.5-86 GHz range)                         |



## WRC-19 Agenda Item 9.1, Issue 9.1.1

**Agenda Title: 9** to consider and approve the Report of the Director of the Radiocommunication Bureau, in accordance with **Article 7** of the Convention:

**9.1** on the activities of the Radiocommunication Sector since WRC-15;

ISSUE 9.1.1: <u>Resolution 212</u> (Rev.WRC-15)

Implementation of International Mobile Telecommunications in the frequency bands 1885-2025 MHz and 2110 -2200 MHz

#### **Responsible Group(s):** (<u>WP 4C<sup>1</sup></u> and <u>WP 5D<sup>2</sup>, $\frac{3}{2}$ / -)</u>

**1** WP 4C is responsible for the studies requested in Res. **212 (Rev.WRC-15)** *invites ITU-R* with respect to the satellite component of IMT, taking into account the technical and operational characteristics provided by WP 5D.

2 WP 5D is responsible for the studies requested in Res. **212 (Rev.WRC-15)** *invites ITU-R* with respect to the terrestrial component of IMT, taking into account the technical and operational characteristics provided by WP 4C.

3 The conclusion of the draft CPM text shall be agreed by both WP 4C and WP 5D. For this purpose, the Chairmen of both WPs shall coordinate the schedule of the meetings, as appropriate.



## Spectrum of Agenda 9.1 issue 9.1.1



| Allocation to services |                            |                                          |  |  |  |  |  |  |
|------------------------|----------------------------|------------------------------------------|--|--|--|--|--|--|
| Region 1               | Region 1 Region 2 Region 3 |                                          |  |  |  |  |  |  |
| 1 980-2 010            | FIXED                      |                                          |  |  |  |  |  |  |
|                        | MOBILE                     | MOBILE                                   |  |  |  |  |  |  |
|                        | MOBILE-SATELLITI           | MOBILE-SATELLITE (Earth-to-space) 5.351A |  |  |  |  |  |  |
|                        | 5.388 5.389A 5.389B        | 5.388 5.389A 5.389B 5.389F               |  |  |  |  |  |  |
|                        |                            |                                          |  |  |  |  |  |  |
| 2 170-2 200            | FIXED                      |                                          |  |  |  |  |  |  |
|                        | MOBILE                     |                                          |  |  |  |  |  |  |
|                        | MOBILE-SATELLITH           | E (space-to-Earth) 5.351A                |  |  |  |  |  |  |
|                        | 5.388 5.389A 5.389F        | -                                        |  |  |  |  |  |  |

#### Arrangement from ITU-R Rec. M.1036-5



CoE India Node, 29 Oct. to 02 Nov. 2018

## WRC-19 Agenda for MTC IoT

#### Agenda Item 9.1, Issue 9.1.8



Agenda Title: 9 to consider and approve the Report of the Director of the Radiocommunication Bureau, in accordance with Article 7 of the Convention:
9.1 on the activities of the Radiocommunication Sector since WRC-15;

#### ISSUE 9.1.8: Issue 3) in the Annex to <u>Resolution 958</u> (WRC-15)

Urgent studies required in preparation for the 2019 World Radiocommunication Conference

3) Studies on the <u>technical and operational aspects</u> of radio networks and systems, as well as <u>spectrum needed</u>, including possible <u>harmonized use of spectrum</u> to support the implementation of <u>narrowband and broadband machine-type communication</u> infrastructures, in order to develop Recommendations, Reports and/or Handbooks, as appropriate, and to take appropriate actions within the ITU Radiocommunication Sector (ITU-R) scope of work.

Responsible Group: <u>WP 5D</u> Concerned Groups: WP 1B, WP 5A



## **Example Frequency Bands Useful for IoT**

Chapter 3 to Doc. 5D/758

| <b>IMT Arrangement</b> | Example        | e frequency bar     |          |                           |
|------------------------|----------------|---------------------|----------|---------------------------|
| (according to Rec.     | Mobile station | <b>Base station</b> | Unnaired | Channel size              |
| ITU-R M.1036)          | transmitter    | transmitter         | onpuncu  |                           |
| A9                     |                |                     |          | 200 kHz                   |
|                        | 733-736        | 788-791             | None     | (200 kHz blocks can be    |
|                        |                |                     |          | aggregated up to 1.4 MHz) |
| A1                     | 829-849        | 874-894             | None     | 200 kHz                   |
| A2                     | 895-905        | 940-950             | None     | 180 kHz                   |
| B1                     | 1 735-1 755    | 1 830-1 850         | None     | 200 kHz                   |
| G3                     |                |                     | 1427-    |                           |
|                        |                |                     | 1517     |                           |
| G2                     | 1427-1470      | 1475-1518           |          | 200 kHz                   |



## **Example Frequency Bands for LTE-M**

Chapter 3 to Doc. 5D/758

| 690 | 700 | 710     | 720                 | 730                 | 740                                       | 750                                            | 760                                                | 770                                                                                                           | 780                                                                                                                     | 790                                                                                                                                                         | 800                                                                                                                                                                                                                                                       |
|-----|-----|---------|---------------------|---------------------|-------------------------------------------|------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |     |         |                     | MS                  |                                           |                                                |                                                    |                                                                                                               | B                                                                                                                       | s                                                                                                                                                           |                                                                                                                                                                                                                                                           |
|     |     |         | 7                   | Tx                  | 36                                        |                                                |                                                    |                                                                                                               | 788                                                                                                                     | x                                                                                                                                                           |                                                                                                                                                                                                                                                           |
|     | 690 | 690 700 | 690     700     710 | 690 700 710 720<br> | 690 700 710 720 730<br>MS<br>Tx<br>733 73 | 690 700 710 720 730 740<br>MS<br>Tx<br>733 736 | 690 700 710 720 730 740 750<br>MS<br>Tx<br>733 736 | 690       700       710       720       730       740       750       760         MS Tx         733       736 | 690       700       710       720       730       740       750       760       770         MS Tx         733       736 | 690       700       710       720       730       740       750       760       770       780         MS         Tx       B         733       736       780 | 690       700       710       720       730       740       750       760       770       780       790         MS         Tx       BS         733       736       780       790         MS         Tx       BS         733       736       788       791 |



# Policy Regarding to Radio Frequency Spectrum

#### **Spectrum identified for IMT IoT:**

- NB/WB-IoT spectrum requirements shall be accommodated within 5G spectrum
- Actually all 5G spectrum could be used for IoT

#### **Non-IMT IoT spectrum:**

- Air interface shall be used on shared basis and license-free
- Air interface protocols shall provide enough opportunity to maximum number of sensors to communicate
- Sharing of license-free spectrum with licensed spectrum is impossible
- 433 MHz, 865 MHz, 921 MHz and 2.4 GHz frequency bands are more popular

#### Estimate your own spectrum requirement for IoT



# **IoT Standard Makers**

# The Landscape of IoT Standard Developing Organizations

ΑШС

एल्ट सेंटर

Weistry of IC ICT Socia:



CoE India Node, 29 Oct. to 02 Nov. 2018

## The Landscape of Vertical and Horizontal Domains of SDOs



Source: AIOTI WG3 (IoT Standardization) – Release 2.8

ALTC

एल्ट सेंटर

Referry of IC XI Insity



## IoT Open Source Software (OSS) Initiatives Landscape





# Mapping SDO/Alliance Initiatives into Knowledge Areas



Source: AIOTI WG3 (IoT Standardization) - Release 2.8



## Mapping of IoT OSS Initiatives into Knowledge Areas



Source: AIOTI WG3 (IoT Standardization) – Release 2.8

## **Notes and Conclusion**

- IoT is growing in parallel to the mobile communication world under IMT as well as independently
- Accommodating IMT IoT spectrum requirement does not need identification of exclusive frequency bands
  - Calculation of IoT spectrum requirement in DENSED areas is necessary and it could reach multiple 10 MHz
  - 5G would provide technology-details and network configuration for massive and critical IoT
- IoT through space is available now but it is also an issue to be addressed specifically in future





# Thank You