

IoT Planning (LoRAWAN and NB-IoT cases)

FACE-TO-FACE Training Course on "TECHNICAL ASPECTS OF WIRELESS SOLUTIONS FOR THE INTERNET OF THINGS (IoT)"

Sami TABBANE 30 September -03 October 2019 Bangkok, Thailand

Objectives

Present the parameters and methodology for planning an IoT network, starting from the expected services to be proposed.

1. Network capacity dimensioning

Dimensioning Steps and Process

Dimensioning Phases

Traffic Dimensioning

Dimensioning Phases

Dimensioning preliminary phases

Traffic dimensioning at BH

Initial parameters (Number of end devices of each type)

> $N_1 = N_A P_1$ $N_2 = N_A P_2$ $\mathbf{N}_{k} = \mathbf{N}_{A} \mathbf{P}_{k}$

Where:

N_{i:} Number of end devices of type *i*

- N_{A:} Total end devices number P_i: Type *i* end devices percentage

Traffic dimensioning at BH

End devices profile at Busy hour

Accesses of end devices to the network are for:

- Measurements reporting,
- Alarms,
- Control,
- ...

Service characteristics:

٠

→ Traffic at busy hour:

- Activity rate per end device,
- Packets sizes.

$$p^{S}_{BH-DL/UL} = (T_{session} N_{session})$$

Where

- : Traffic volume in UL/ DL at Busy hour
 - : Data volume transmitted per exchange (i.e., session)
- : Number of exchanges at BH

 \rightarrow Traffic on the DL:

$$\rho^{S}_{BH-DL} = (\rho^{S}_{BH-DL/UL}) \rho_{DL}$$

Where:

- $\rho^{S}_{BH\text{-}DL/U}\,$: Traffic volume at Busy hour
- ρ^{S}_{BH-DL} : Traffic volume on the DL
- ρ_{DL}

: Percentage of DL traffic

• Traffic at BH

→ Type *i* end devices total traffic at BH $\rho^{i}_{DL/UL} = \rho^{i}_{BH-DL/UL} N_{i}$

 $\rho^{i}_{DL/UL}$ type *i* end devices total traffic at Busy hour

→ Type *i* end devices throughput at BH

 $TH_{i \text{ BH-DL/UL}} = (\rho_{i \text{ DL/UL}}) / 3600$

2. Dimensioning Use Case

Load assessment

The capacity of the planned network must comply with the requirements of the terms of traffic to be handled.

Source: Cisco IBSG, April 2011

Possible distribution in the different areas according to the number of people and the penetration

End devices	Urban area (60 %)	Suburban area (30 %)	Rural area (10 %)
7 million	4.2 million	2.1 million	0.7 million

Service and End Device Modeling

Modeling of:

- End devices (type, technology used, ...)
- Sensors
- Other connected things

Mod

Modeling the services

Fleet Management: The end device can send a packet in the network every **30 second** to track a vehicle

Logistic: an end device can send a packet in the network every 5 min to report his occupation state

* Water meter: can send a packet **once a day** to inform the water consumption

Traffic Modeling

Several parameters to consider depending on the technology

Use case Assumptions

- Big City
- Public LoRaWAN Network Dimensioning
- Number of devices increase every year
- Total Bandwidth: 1 MHz

- LoRa SX1301 Chipset
- Bandwidth: 125 KHz
- 8 channels
- Central Frequency: 868 MHz
- CRC enabled
- Low data rate optimization enabled

Traffic Modeling

Services	Packet transmission frequency (per hour)
Sensor	1
Metering	0,04
Alarm	1/365/24
Tracking Logistic	2
Vehicle Tracking	6
Traffic Control	60
Agriculture	1
Wearables	2
Home Automation	0,50

Gateway Capacity

Lora Gateway Capacity: given in terms of number of packets per day.

LoRa Packet (maximum size: 256 bytes)

Preamble	Payload	CRC
Up to 5 bytes	Min: 2 bytes U	Ip to 2 bytes

Payload Size (byte)	Spreading Factor	Symbol Rate	Programmed Preamble (Symbol)	Preamble Duration (ms)	Coding Rate	Number of payload Symbol	Payload Duration (ms)	Duration of packet (ms)	Single Gateway with 8 channels Capacity (Packets per day)
10	7	0,98	6	10	2	32	32	43	1 997 041
10	8	0,49	6	20	1	23	47	68	1 268 797
5	9	0,24	6	41	2	14	57	99	869 845
15	10	0,12	6	83	4	40	327	411	209 888
15	11	0,06	6	167	1	23	376	544	158 600
10	7	0,98	6	10	4	40	40	51	1 679 104
15	8	0,49	6	20	1	33	67	88	975 434
12	9	0,24	6	41	3	29	118	160	537 420
12	10	0,12	6	83	1	23	188	272	317 199

IoT Applications with Different Characteristics

Many different M2M applications with different characteristics

	Data volume	Quality of Service	Amount of signalling	Time sensitiv	Mobility	Server initiati communicati	Packet switcl only
Example Applications				ity		on eq	hed
Smart energy meters					no	yes	yes
Road charging					yes	no	yes
eCall					yes	no	no
Remote maintenance					no	yes	yes
Fleet management				-	yes	yes	no
Photo frames					no	yes	yes
Asset tracking					yes	yes	no
Mobile payments					yes	no	yes
Media synchronisation				-	yes	yes	yes
Surveillance cameras					no	yes	yes
Health monitoring	-	-	-	-	yes	yes	yes
very low low		intern	nediate	high	-	very high	1

- There is not one type of M2M application with one set of requirements
- Operators should be able to differentiate their M2M portfolio

Source: www.itu.int/md/T09-SG11-120611-TD-GEN-0844/en

First Year

Gateway Capacity: 1 500 000 packets per day

Services	Packet transmission frequency (at BH)	End devices Number	Number of packets per day for one device	Burstiness Margin	Security Margin	Number of packets	
Sensor	1	200	24	20%	10%	152 064	
Metering	0,04	100,00	1	20%	10%	132	
Alarm	0,00	100,00	1	20%	10%	132	
Tracking Logistic	2	100	48	20%	10%	304 128	
Vehicle Tracking	6	70	144	20%	10%	1 916 007	
Traffic Control	10	150	240	20%	10%	11 404 800	
Agriculture	1	200,00	24	20%	10%	152 064	
Wearables	0,5	1000,00	12	20%	10%	190 080	
Home Automation	0,5	300	12	20%	10%	57 024	
Total Packets per day							

Number of Gateways: 10

Second Year

Gateway Capacity: 1 500 000 packets per day

Services	Packet transmission frequency (at BH)	End device Number	Number of packets per day for one device	Burstiness Margin	Security Margin	Number of packet
Sensor	1	400	24	20%	10%	304 128
Metering	0,04	200	1	20%	10%	264
Alarm	0,00	200	1	20%	10%	264
Tracking Logistic	2	200	48	20%	10%	608 256
Vehicle Tracking	6	140	144	20%	10%	3 832 013
Traffic Control	10	300	240	20%	10%	22 809 600
Agriculture	1	400	24	20%	10%	304 128
Wearables	0,5	2000	12	20%	10%	380 160
Home Automation	0,5	600	12	20%	10%	114 048
Total Packets per day						

Number of Gateways: 19

Third Year

Services	Packet transmission frequency (at BH)	End device Number	Number of packets per day for one device	Burstiness Margin	Security Margin	Number of packets
Sensor	1	800	24	20%	10%	608 256
Metering	0,04	400	1	20%	10%	528
Alarm	0,00	400	1	20%	10%	528
Tracking Logistic	2	400	48	20%	10%	1 216 512
Vehicle Tracking	6	300	144	20%	10%	8 211 456
Traffic Control	10	600	240	20%	10%	45 619 200
Agriculture	1	800	24	20%	10%	608 256
Wearables	0,5	3000	12	20%	10%	570 240
Home Automation	0,5	1200	12	20%	10%	228 096
Total Packets per day						

Number of Gateways: 39

3. Network planning

Wireless Network Planning Process

1. Pre-planning of radio network: Initial Site Selection

Determine:

- Theoretical location of sites
- Implementation parameters (antenna type / azimuth / tilt / altitude / feeder type / length)
- Gateway parameters (as transmission power, transmission periodicity, ...)

1. Based on the network dimensioning and site information.

2. An **analysis** is made to check whether the **coverage** of the system meets the requirements → the height and tilt of the antenna and the GTWs number are adjusted to optimize the coverage.

3. The system capacity is analyzed to check whether it meets the requirement.

2. Pre-planning of radio network: Prediction

- Predict coverage results such as best serving cell, overlapping area ...
- Carry out detailed adjustments (such as gateway number, gateway configuration, antenna parameters) after analyzing the coverage prediction results
- Obtain proper site location and parameters that should satisfy coverage requirements

3. Cell planning of radio network: Site survey

- Select backup location for site if theoretical location is not available
- Take into account:
 - Radio propagation factor: situation / height / surrounding /
 - Implementation factor: space / antenna installation / transmission / power supply

3. Cell planning of radio network: Simulation

- Generate certain quantity of network instantaneous state (snapshots)
- By iteration
- Determinate gateway load, connection status and rejected reason for each end device
 - → understand network performance

Radio Planning

PRE-PLANNING

- Choice of the area
- Choice of antennas
- Choice of equipment (GW and sensor)
- Choice of propagation model
- > Frequencies choice

Coverage Planning

Technologies	Parameters	LOR	A	RF	MA	SIG	SIGFOX		_M	
		DL	UL	DL	UL	DL	UL	DL	UL	• Hnode =0,3m
TX power (dBm)	ТХр	20	20	20	23	24	20	40	20	• HNodeB=30m
TX Cable loss (dB)	TXI	-3	-1	-3	-1	-3	-1	-3	-1	Dense urban
TX Antenna gain, dBi	TXg	9	0	9	0	9	0	10	0	Lora & Sigfox Frequency=868MHz
TX subtotal (dB)	TXs=TXp+ TXl+TXg	26	19	26	22	30	19	47	19	 RPMA frequency =2.4 GHz LTE-M frequency= 1,8 GHz
RX Sensitivity (dBm)	RXs	-137	-142	-133	-142	-129	-142	-129	-129	
RX Environment noise (dB)	RXn	0	-10	0	-10	0	-10	0	-10	
RX Antenna gain diversity (dBi)	RXgd	0	10	8	10	0	10	0	10	
RX SubTotal (dBm)	RXs=RXgd+RXn- RXs	137	142	141	142	129	142	129	129	Using COST Hata
Total (dBm)	Tot=TXs+ RXs	163	161	167	164	159	159	176	148	model as propagation
Maximum allowable pathloss	Min(TotDL, TotUL)	16:	1	1	64	1	.59	14	48	model
Range (Km)		3.5	5		2	3	3.2	2	.8	
Sectorization		YES	5	1	10	Y	'ES	Y	ES	

4. Dimensioning and Planning Integrated Process

Dimensioning Steps and Process

Relation between coverage and bitrate

3125

1758

977

537

293

103

205

371

741

1483

-10

-12,5

-15

-17,5

-20

	-	

SF 8

SF 9

SF 10

SF 11

SF 12

488

244

122

61

30

Impact on the cell capacity

SNR	SF	Bitrate (b/s)	% of the cell	% of the population in this area	Weight
-20dB	LoRa SF12	293	15%	10%	29
-17.5dB	LoRa SF11	537	15%	10%	53
-15dB	LoRa SF10	977	10%	20%	195
-12.5dB	LoRa SF9	1758	10%	20%	351
-10dB	LoRa SF8	3125	20%	25%	781
-7.5dB	LoRa SF7	5469	30%	15%	820
	Cell capa	2231			

Dimensioning process

Step 1: initial configuration (dimensioning and planning)

Dimensioning process

Step 2: final configuration

Cell available bandwidth (Mb/s) Aggregate required capacity (Mb/s) Coverage and interference characteristics Radio interface characteristics New radio planning: optimization

Final number of required cells and gateway configuration

- End devices types,
- Service usage/end devices class,
- Contention ratios/end devices class,
- End devices geographic distribution,
- Services packet sizes,
- Services and protocols overheads.

F. Case studies

IoT planning with

Mentum Planet

- Introduction to Planet
- Use case 1: LoRa network planning in Tunis area
- Use case 2: Patavina Technologies network in Italy

IoT Planning

- Create demand forecasts and determine best technology options
- Dimension and simulate LPWA networks
- Optimize deployment of IoT technologies

- New IoT capabilities. Support for IoT technologies SIGFOX and LoRa is delivered through an optional module. Network analyses (best server, signal strength, SIGFOX diversity levels, Uplink LoRa, best available modulation based on spreading factors) are all available.
- MapInfo geographic information system. Operators planning their network and related demand forecasts are trying to solve an RF geospatial problem. Planet is includes a leading geographic information system — MapInfo Professional[™] — native to the application.
- An open platform. Planet offers multiple means to integrate 3rdparty solutions or key systems through application programming interfaces (APIs).

Different Steps

Project Setup	 Network Settings: Frequency, bands, Site Editor: Propagation, antenna, PA Power, IoT Device Editor: PA Power, Noise Figure,
Propagation Modeling	 Geographical Data support (Elevation, clutter, height, buildings, forest, polygons,) Intelligent antenna management and modeling
Network Analyses	 Signal Strength, best available modulation, Data analytics and statistics Scheduling and automating

Site Editor

- Antenna's property
- Radiation pattern
- HBA
- Tilt
- Azimuth, ...

eneral Link	Prediction	user Data			
Antenna	1	0.0.CXL900-6LW (1) ~	Edīţ	20	D 3D
Link configurati	on:	Default ~	Edg	H pattern 0 V pattern -00	
Cable length:		30.00 m	Vie <u>w</u>	and a start	~
Advanced C	onfiguratio	n		and the second s	
PA To Power El	ntal RP (Uplink Composite Noise Figure (dB)		Diversity Level (n) Diversity Penalty Neq(n) (dB)	
(dBm) (d	Bm)			1	10
27.00	31270		000	2	6
				3	4
				4	3

Network Analysis

 IoT-specific simulation engine with downlink and uplink analysis

- DL/UL best server
- DL/UL received signal strength
- DL/UL S/(N+I)
- DL/UL coverage (Including diversity requirement)
- Number of servers
- Nth Best Server
- LoRa Uplink capacity
- Multi-threaded

- Introduction to Planet
- Use case 1: LoRa network planning in Tunis area
- Use case 2: Patavina Technologies network in Italy

1 227.3 Km²

Downlink Best Server

48

Downlink Signal Strength

case_study_14dBm_DownlinkRecei Legend						
-70) to -60					
-90) to -70					
-100) to -90					
-110) to -100					
-125	5 to -110					
-160) to -125					

Downlink Signal Strength

Percentage Sub Area

Uplink Signal Strength

- More important to consider
- IoT devices send more packets to gateway than they receive
- LoRa End Devices Transmit Power: **14 dBm to 20 dBm**

Two use cases

14 dBm

Better battery economy for end

devices

20 dBm

Better for end devices on the grid

End Device Power: 20 dBm

End Device Power: 14 dBm

End Device Power: 20 dBm

End Device Power: 14 dBm

Uplink Signal Strength

Comparison of Areas covered percentage

54

End Device Power: 20 dBm

End Device Power: 14 dBm

Lora Spreading Factor use per area

End Device Power: 20 dBm

End Device Power: 14 dBm

Lora Spreading Factor use per area

Comparison of SF use per device transmit Power

Total Number of sites calculation

Calculate possible number of packets to be send in every area simultaneously

Distribute End Nodes per area according the different services

Calculate the number of gateways according the capacity of one gateway

Final Numbers of Gateways = Maximum {

Number of Gateways (coverage),

Number of Gateways (capacity) }

LoRa network coverage

KPN deployment plans for LoRa in the Netherlands, showing planned coverage for the end of May 2016 (left) and end of June 2016 (right)

- Introduction to Planet
- Use case 1: LoRa network planning in Tunis area
- Use case 2: Patavina Technologies network in Italy

- Private Network by Patavina Technologies in Italy
- Building with **19 floors**
- LoRaWAN Network
- Goal:
 - Reduce the cost related to heating, ventilation and air conditioning
 - Temperature and Humidity control

Installation

Single gateway on ninth floor

All over the building

32 nodes

All nodes **successfully** covered

- Coverage analysis by Patavina Technologies in Italy
- Padova, Italy
- LoRaWAN Network
- Goal:
 - > Assess **"worst case" coverage** (Harsh propagation conditions)
 - Conservative estimate number of gateways to cover the whole city

Results

Single gateway Max radius: 2 Km Nominal Radius: 1.2 Km

Padova system cell overage

- **30** gateways
- 200 000 inhabitants → 7 000 per gateway
- Adequate for most smart city applications

Thank You