#### Региональный семинар МСЭ для стран СНГ и Грузии «Тенденции развития конвергентных сетей: решения nocm-NGN, 4G и 5G»»

17 – 18 ноября 2016 г., Киев, Украина





### РАДИОЧАСТОТНЫЙ МОНИТОРИНГ: ВСЕГДА БЫТЬ В «МАСКЕ»

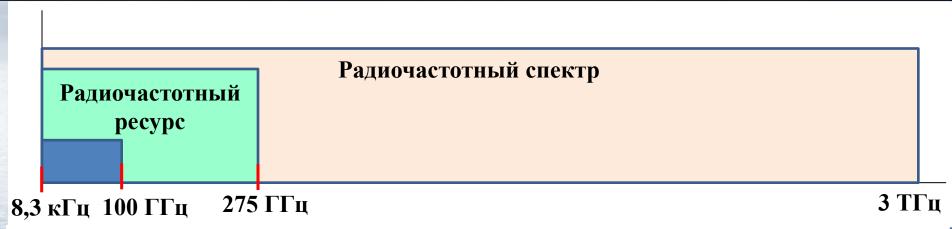
Благодарный В.Г. ктн доцент Государственное предприятие «Украинский государственный центр радиочастот»

#### Основные задачи радиомониторинга



Государственное предприятие «Украинский государственный центр радиочастот»

# Основной задачей радиомониторинга является поддержка процесса управления использованием спектра и решение проблем помех.


#### Конкретные цели:

- 1) содействие в решении проблем электромагнитных радиочастотных помех в местном, региональном или глобальном масштабе;
- 2) обеспечение необходимых данных контроля для процесса управления использованием радиочастотного ресурса, проверка надлежащих технических и эксплуатационных характеристик передаваемых сигналов (соблюдение лицензии);
- 3) содействие в обеспечении допустимого качества приема населением звуковых и телевизионных вещательных передач;
- 4) обеспечение условий совместной работы сетей связи.

# Составляющие процесса управления использованием спектра



Государственное предприятие «Украинский государственный центр радиочастот»



Основные составляющие процесса управления использованием спектра:

- -распределение радиочастот;
- -выделение радиочастот (радиочастотного канала);
- -присвоение радиочастоты (радиочастотного канала).

**Распределение (полосы) радиочастот (allocation of a frequency band)** – запись в Таблице распределения частот некоторой заданной полосы частот с целью ее использования одной или несколькими наземными или космическими службами при определенных условиях.

#### Радиослужбы. Выделение. Присвоение



#### Государственное предприятие «Украинский государственный центр радиочастот»

#### Радиослужбы:

- -Фиксированная
- -Подвижная
- -Радиовещательная
- -Радионавигационная
- -Радионавигационная спутниковая служба
- -Служба космической эксплуатации
- -Радиоастрономическая
- -Спутниковая служба исследования Земли ...

#### Радиовещательная служба:

- -Аналоговое звуковое вещание
- -Цифровое звуковое вещание
- -Аналоговое телевидение
- -Цифровое телевидение

Радионавигационная спутниковая

служба:

-Глонасс

-Galileo

Выделение (радиочастот или радиочастотного канала) (allotment of a radio frequency) – запись определенной полосы или радиочастотного канала в согласованном плане, принятом компетентной конференцией, с целью использования его одной или несколькими администрациями для наземной или космической службы радиосвязи в одной или нескольких указанных странах или географических зонах при определенных условиях.

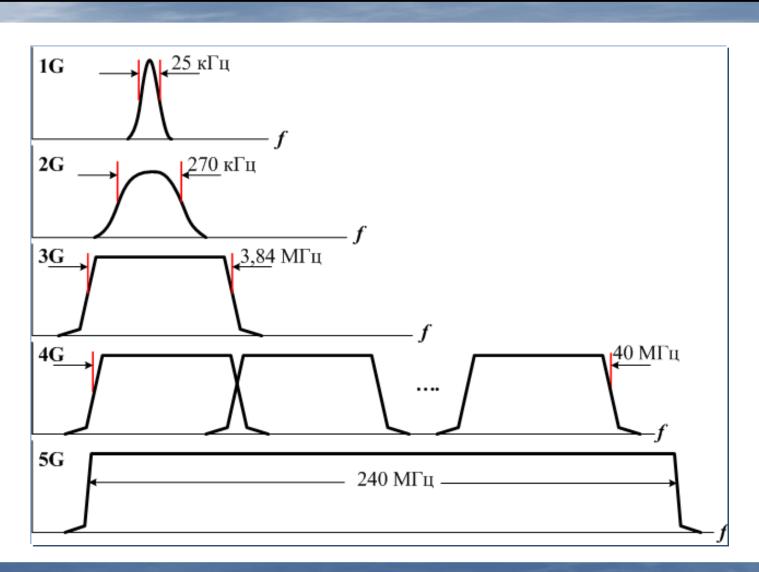
Присвоение (радиочастоты или радиочастотного канала) (assignment of a radio frequency) – разрешение, выдаваемое администрацией какой-либо радиостанции, на использование радиочастоты или радиочастотного канала при определенных условиях.

# **Концепция гармонизации выделения** радиочастот



Государственное предприятие «Украинский государственный центр радиочастот»

**До недавнего времени** краеугольным камнем европейской политики по регулированию использования РЧР являлась **гармонизация** выделения радиочастот, т.е. жесткое закрепление за каждой из радиотехнологий отдельных участков спектра.


Идея заключалась в том, чтобы создать НАИЛУЧШИЕ условия для развития массового рынка, и, как следствие, - Европейского роуминга, удешевления оборудования и услуг связи.

#### Сущность гармонизации:

- -Единая полоса частот для использования определенным типом оборудования/системой во всех участвующих странах.
- -Определение технического стандарта и других условий использования радиочастот.
- -Контроль соблюдения регулятором условий использования радиочастот через лицензирование и мониторинг.

### Ширина спектра сигналов для различных поколений радиосвязи





### Концепция WAPECS



Государственное предприятие «Украинский государственный центр радиочастот»

**WAPECS** – Wireless Access Policy for Electronic Communications Services – политика по развертыванию систем беспроводного доступа для предоставления любых услуг электросвязи конечному пользователю.

#### Общий концептуальный подход WAPECS:

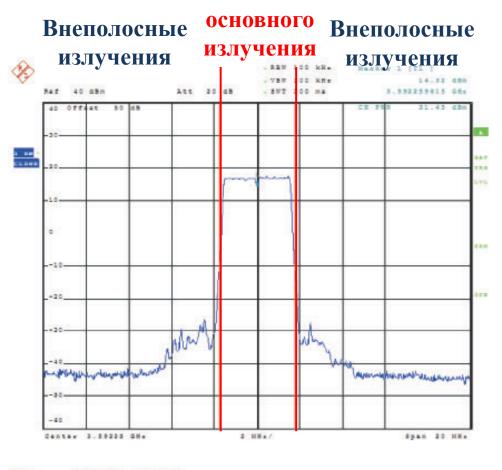
- 1) Спектральная маска излучения (определяется стандартом):
- ТТХ передатчика и формирователя каналов в зависимости от радиотехнологии;
- гарантированная внутрисистемная совместимость;
- является частью оценки соответствия оборудования.
- 2) Граничная маска блока (*BEM*, *Block Edge Mask*):
- технологическая нейтральность;
- относится ко всему блоку спектра оператора;
- охватывает как внутриблочные, так и межблочные излучения;
- различные BEM относятся к базовым и мобильным станциям, к режиму FDD и TDD.

#### Концепция «технологической нейтральности»



Государственное предприятие «Украинский государственный центр радиочастот»

Реализация принципов **технологической нейтральности**, предоставляемых посредством гибкого использования РЧР, позволяет пользователю выбирать между различными мобильными технологиями (3G/UMTS, 4G/LTE, WiMAX и т.д.) и соответствующими услугами на базе этих технологий.


Методы реализации технологической нейтральности (Отчет СЕРТ 19 «Минимальные технические требования в полосах частот при внедрении концепции WAPECS»):

- 1.Определение для полосы частот перечня возможных радиотехнологий и условий их использования.
- 2.Применение «маски» излучения передатчика (BEM).
- 3.Плотность потока мощности (PFD).
- 4. Маски спектральной плотности передатчиков (PSD).
- 5.Смешанный подход.
- 6. Метод определения частотно-временной области.

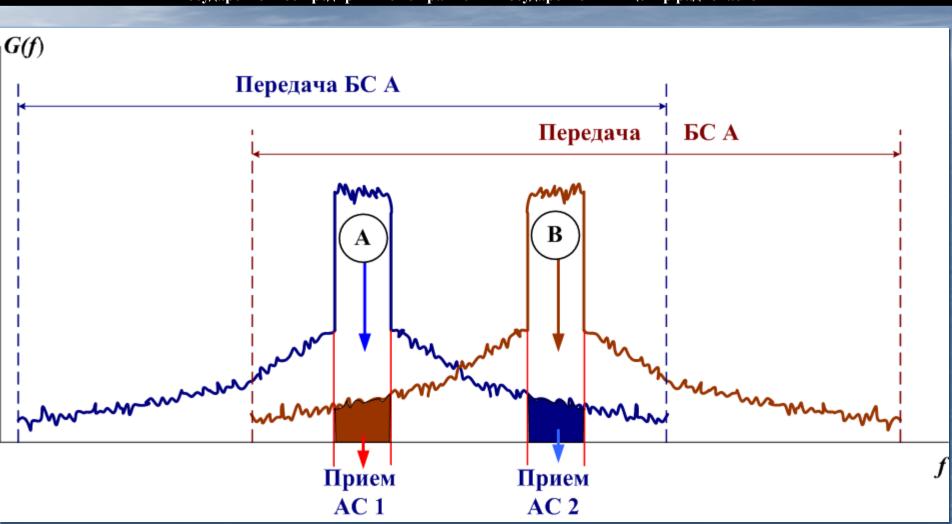


Государственное предприятие «Украинский государственный центр радиочастот»

Спектр сигнала IEEE 802.16-2009 (WiMAX 3,6 ГГц) Полоса

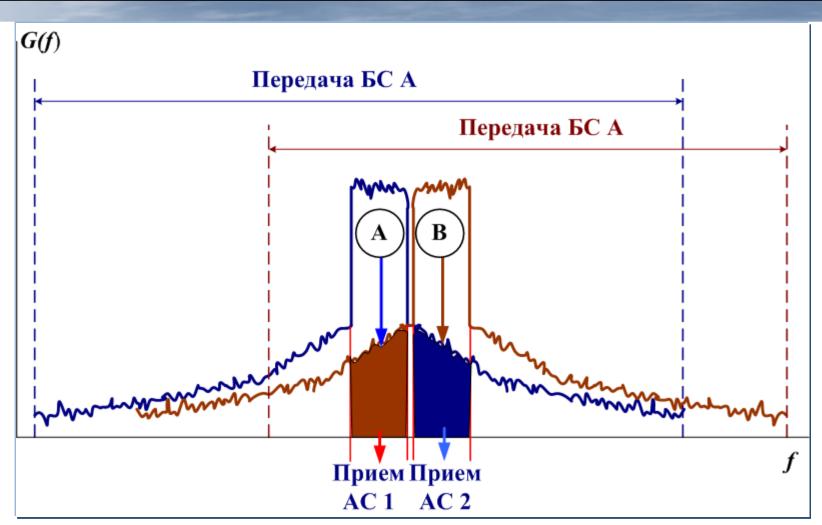





Государственное предприятие «Украинский государственный центр радиочастот»

#### Спектр сигнала БС LTE700 (758 МГц – 788 ГГц)



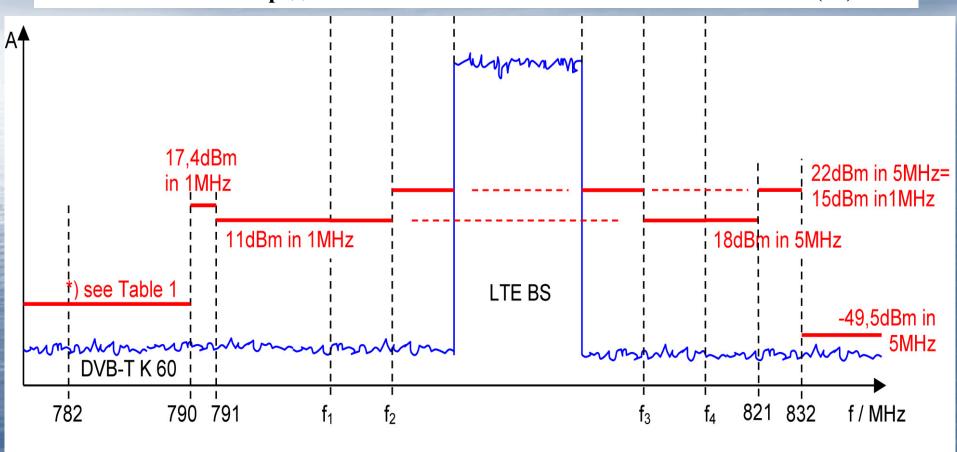

#### Тенденции развития беспроводной связи





#### Тенденции развития беспроводной связи






#### Образец BEM для БС LTE800



Государственное предприятие «Украинский государственный центр радиочастот»

#### Маска сигнала передатчика БС LTE800 в соответствии с ECC/DEC/(09)03

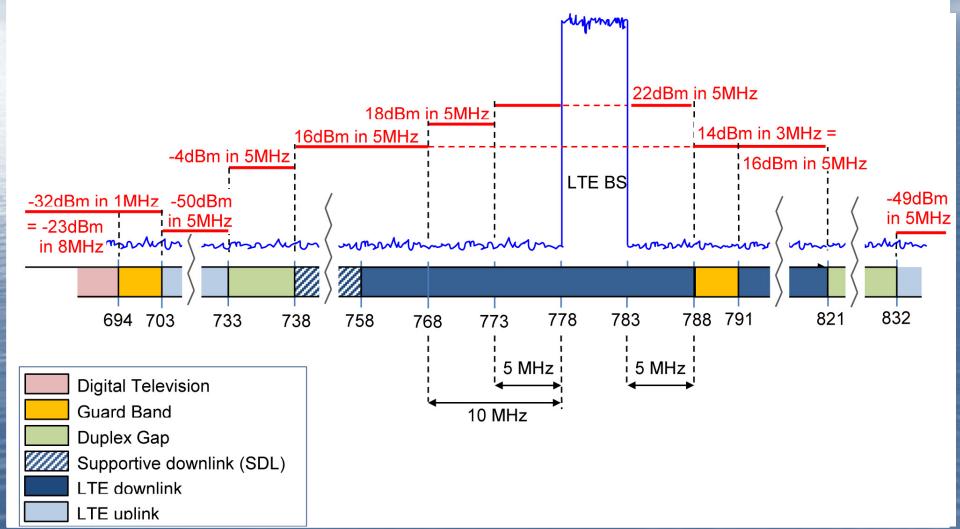


 $f_1 = 10MHz$  from lower block edge,  $f_2 = 5MHz$  from lower block edge

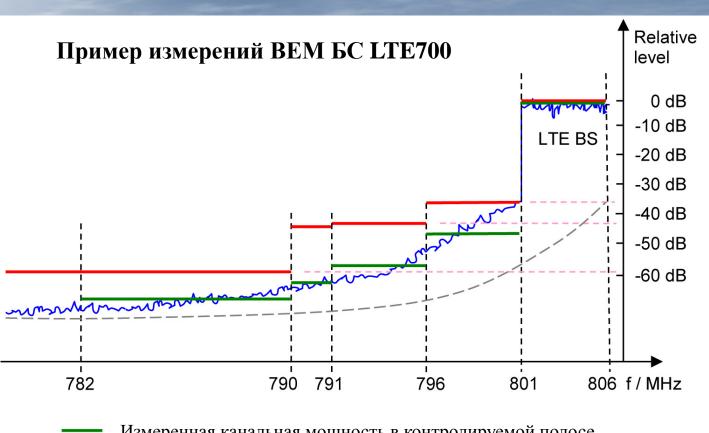
 $f_3 = 5MHz$  from upper block edge,  $f_4 = 10MHz$  from upper block edge



Государственное предприятие «Украинский государственный центр радиочастот»


### Относительные уровни BEM на примере БС LTE800 в канале 806 МГц для э.и.и.м. 56дБм/5 МГц

| Offset from LTE centre frequency | Frequency range | e.i.r.p. limit according<br>to BEM definition<br>(ECC/DEC/(09)03 [12]) | Reference<br>bandwidth | Level           | Relative<br>level |
|----------------------------------|-----------------|------------------------------------------------------------------------|------------------------|-----------------|-------------------|
| <-16 MHz                         | < 790 MHz       | 0 dBm                                                                  | 8 MHz                  | -9 dBm/MHz      | -58 dB            |
| -1615 MHz                        | 790791 MHz      | 17.4 dBm                                                               | 1 MHz                  | 17.4<br>dBm/MHz | -31.6 dB          |
| -1510 MHz                        | 791796 MHz      | 18 dBm                                                                 | 5 MHz                  | 11 dBm/MHz      | -38 dB            |
| -105 MHz                         | 796801 MHz      | 22 dBm                                                                 | 5 MHz                  | 15 dBm/MHz      | -34 dB            |
| -5+5 MHz                         | 801811 MHz      | 59 dBm                                                                 | 10 MHz                 | 49 dBm/MHz      | 0 dB              |
| +5+10 MHz                        | 811816 MHz      | 22 dBm                                                                 | 5 MHz                  | 15 dBm/MHz      | -34dB             |
| +10+15 MHz                       | 816821 MHz      | 18 dBm                                                                 | 5 MHz                  | 11 dBm/MHz      | -38 dB            |
| +15+26 MHz                       | 821832 MHz      | 11 dBm                                                                 | 1 MHz                  | 11 dBm/MHz      | -38 dB            |



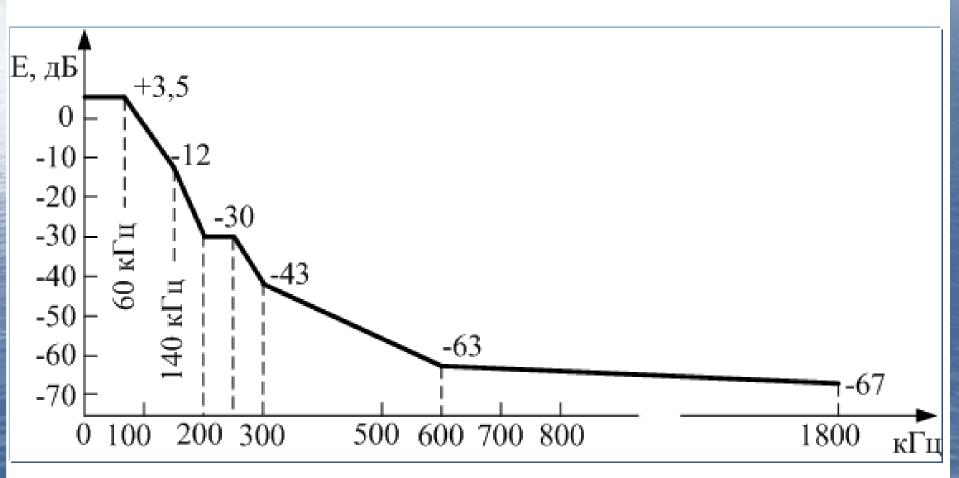

Государственное предприятие «Украинский государственный центр радиочастот»

( Относительные уровни BEM БС LTE700 в канале 780,5 МГц (ECC/DEC/(09)03 )








- Измеренная канальная мощность в контролируемой полосе
- Границы ВЕМ в контролируемой полосе
- Измеренный уровень в полосе 100 кГц
- Шум системы измерений + затухание фильтра

#### Нормы на спектральную характеристику сигнала GSM



Государственное предприятие «Украинский государственный центр радиочастот»

#### Нормы на спектральную характеристику сигнала GSM



#### Способы выполнения требований ВЕМ



Государственное предприятие «Украинский государственный центр радиочастот»

### Способы выполнения требований маски ВЕМ оператором для различных случаев:

- а) использование оборудования с требуемыми частотными характеристиками;
- б) использование защитной полосы частот для оборудования, которое не соответствует требованиям маски ВЕМ;
- в) применение дополнительных фильтров, либо снижения мощности в основной полосе частот;
- г) операторы, использующие соседние блоки частот самостоятельно договариваются о снижении требований маски ВЕМ по сравнению с установленными пределами.

Использование масок BEM не обеспечивает гарантию отсутствия помех во всех случаях, а лишь обеспечивает их минимизацию до определенного уровня. Более того, маски BEM в соседних полосах частот могут быть жестче, чем возможности стандартного оборудования, что может потребовать использования защитной полосы частот.

#### Выполнение требований к маске ВЕМ



Государственное предприятие «Украинский государственный центр радиочастот»

В диапазоне 800 МГц в случае возникновения помех операторы широкополосного доступа обязаны их устранить, например, путем установки фильтров на приемники телевизионного вещания, работающих на каналах ниже 790 МГц.

В настоящее время маски ВЕМ разработаны и включены в нормативные документы Европейской Комиссии применительно к сетям подвижной службы в полосах радиочастот 800 МГц, 2100 МГц, 2600 МГц и 3500 МГц.

В полосах частот 900 МГц и 1800 МГц оказалось невозможным определить маски ВЕМ из-за нелинейного характера воздействия узкополосных помех от сетей GSM на широкополосные приемники UMTS и LTE.

# Aourag zavouren. Chacuso za buumanue