

Министерство образования и науки Украины

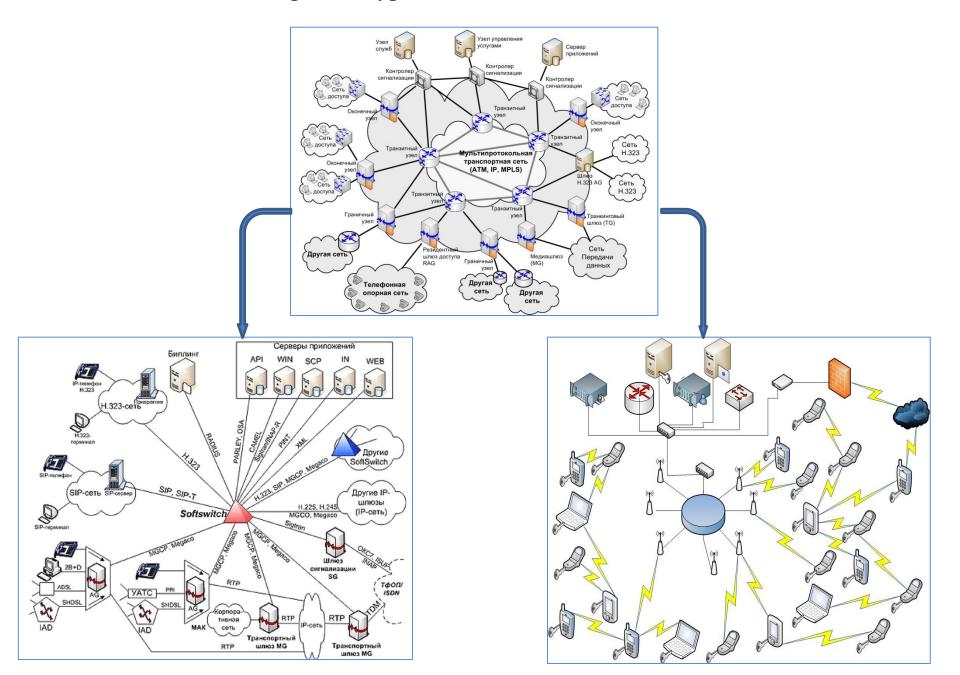
Государственный университет телекоммуникаций

Кафедра информационной и кибернетической безопасности

ПУТИ РЕШЕНИЯ ЗАДАЧ ОПТИМАЛЬНОГО УПРАВЛЕНИЯ ПРОБЛЕМАМИ КИБЕРБЕЗОПАСНОСТИ ПРИ ПОСТРОЕНИИ СЕТЕЙ НОВОГО ПОКОЛЕНИЯ

Семко Виктор Владимирович д.т.н., доцент

Основные проблемы обеспечения безопасности функционирования сетей нового поколения


Угрозы информации:

- установка несанкционированного контроля над элементами сети;
- несанкционированное ознакомление и модификация информации при обмене информацией;
- атаки на сеть;
- негативное внешнее воздействие на элементы сети, включая воздействие вредоносного программного обеспечения (вирусов) и осуществление атак на ресурсы;
- нарушения при аутентификации;
- вариативное множество элементов сети;
- уязвимости программного обеспечения.

Одним из основных стандартов в области IT- безопасности является совместно с ITU стандарт ISO/IES 18028, который включает разделы:

- управление сетевой безопасностью;
- архитектура сетевой безопасности;
- безопасная связь между сетями с использованием шлюзов;
- безопасный удаленный доступ;
- безопасная связь с использованием виртуальных частных сетей.

Архитектура сетей нового поколения

Проблемы кибернетической безопасности сетей нового поколения

Системы управления кибернетическими объектами (информационнотелекоммуникационными и программными системами) в кибернетическом пространстве синтезируются как интеллектуальные системы управления.

Традиционные системы сетевого управления строятся как набор агентов, выполняющих простейшие задачи по сбора данных с сетевых устройств с примитивной предварительной обработкой и передачей данных на мощный интеллектуальный центр (сервер управления).

При проектировании систем управления в сетях нового поколения целесообразно рассматривать кибернетическую систему как самоорганизующуюся с вариативной топологией в условиях конфликта и неопределенностей. отказаться от иерархического принципа соподчинения и перейти к распределенному принципу управления.

Конфликт в технической системе - явление взаимодействия по-разному целенаправленных сторон - объектов, технических систем. Трактовка конфликта указывает на факт тесной взаимосвязи с проблемой целенаправленности и циледостижимости.

Понятие конфликта является основополагающим понятием теории технических систем. Без решения конфликта само существование технических и технических эргатической систем (систем человек - машина) было бы невозможным.

Математическая модель СИУ в сети пост-NGN

Математическая модель описания конфлікта в информационно-телекоммуникационной системе

 $\Gamma = \left\langle R_{_{\!\! /\, \!\! /}}, S_{_{\!\! /\, \!\! /}}, S_{_{\!\! /\, \!\! /}}, R_{_{\!\! /\, \!\! /}} \right\rangle$, где $R_{_{\!\! /\, \!\! /}}$ - множество, которое объединяет участников конфликта в соответствии с их действиями, $S_{_{\!\! /\, \!\!\! /}}$ - множество стратегий коалиции действий, S - множество стратегий поведения (действий) объектов, $R_{_{\!\!\! /\, \!\!\! /}}$ - множество, которое объединяет участников конфликта по интересам (целям), $G_{_{\!\! /\, \!\!\!\! /}}$ - множество отношений коалиции интересов.

<u>Математическая модель синтеза и принятия решений,</u> которая связывает значения неопределенных показателей и стратегий с управлением, которое реализуется СИУ.

 $D_0 = \left\langle Y, G, U, J, \Omega \right\rangle$, где Y - множество результатов, G - модель предпочтений результатов (принимаемых решений), U - множество стратегий принятия решений, L - множество возможных значений неопределенных показателей; J - функция, которая определяет взаимосвязь неопределенного показателя и результата, который получан вследствие принятия решения, Ω - иная информация о решении, которая учитывается при решении (формализованные сведения о конфликте, преимущества участников), множество $T \times X$ является пространством действий (фазовым пространством, пространством состояний), закон управления, который является отображением $k: T \times X \to U$, где значение u(t) = k[t, x(t)] принадлежит множеству U, x(t) -

Рис. 1. Структурная схема математической модели совокупности элементов объекта или системы

переменная состояния, которая требует обратного отображения $\gamma^1: Y \to X$ дляопределения координати системы при условии $x(t) = \gamma^1 [y(t)]$.

Математическая модель ИП

Y = F(x,u,w,p,z), де F(.) - оператор интелектуального преобразования, який характеризує структуру та роботу ИП, x - вектор состояния СИУ, u - вектор управления, w - вектор влияния внешней среды, p - вектор сигналов цели, z - вектор параметров ОУ, а также система уравнений, которая описывает $\begin{cases} x = f(x,u,w,t) & npu & x(t_0) = x_0 \end{cases}$

OУ
$$\begin{cases} x = f(x,u,w,t) & npu \quad x(t_0) = x_0 \\ y = C(x) & npu \quad t \geq t_0 \end{cases}$$
, де $f(.)$ - вектор-функция, которая

Рис. 2. Обобщенная схема СИУ

описывает свойства OY; C(.) - заданная функция виходных сигналов; t - координата времени; y - исходящий вектор (вектор измерений)

Семиотическая модель ИП

 $C = \langle M, \chi_T, \chi_P, \chi_A, \chi_\Pi \rangle$, где $\chi_T, \chi_P, \chi_A, \chi_\Pi$ соответственно являются правилами изменений $T, P, A.\Pi$ в соответствии с семиотической моделью ИП $M = \langle T, P, A, \Pi \rangle$, де T - множество базовых элементов; P - синтаксические правила правила; A - система аксиом; Π - семантические правила, а также формальная модель $L = \langle Z, D, H, V \rangle$, где Z - множество значений, которые интерпретируются, D - правила отображения, которые определяют отображение $T \to Z$ и обратное $Z \to T$ (ставит в соответствие каждому отображению T некоторое отображение, которое его интерпретирует; H - правила отображения, V - правила интерпретации, которые разрешают приписывать некоторое интерпретирующие значение любой синтаксически правильной совокупности базовых элементов.

Теоретико-множественная модель взаимодействия кибернетических систем в условиях конфликта, неопределенностей и ограничений

Формальная теоретико-множественная модель взаимодействия объектов в пространстве наблюдения в условиях замкнутости ограничения $\Pi H (\Gamma_{2n}(Q) = 0)$

$$M = \bigcup_{i=0}^N M^i$$
, где $M^i = \left\langle B^i, F^i, \Gamma^i_{np} \right\rangle$ - частичная модель i -го OH, $M^0 = \left\langle B^0, F^0, \Gamma^0_{np} \right\rangle$ - модель OY, $B^i = \left(X^i, Y^i, A^i \right)$ - базис, который определяет потенциальные возможности взаимодействия i -го OH и OY в пространстве Q , X^i - множества потециально возможного места нахождения i -го OH в пространстве Q , которые определяются как множества (области) управляемых и полууправляемых состояний в пространстве параметров в соответствии с допущеним неопределенности и прогрноза перемещения i -го OH, Y^i - множество, которое определяется характеристиками перемещения i -го OH в пространстве управляемых и полууправляемых состояний и учитывает имеющиеся ресурсы управления по изменению динамических и кинематических характеристик i -го OH в соответствии с допущеним A^i , которое учитывает прогноз, неопределенность, динамику и опасности перемещения i -го OH по отношению к OY для множжества $F^i = \left(f_x^i, f_c^i, d^i \right)$ - свойства i -го OH по отношению к перемещению в пространстве наблюдения просторі Q , f_x^i - сглаженные значения координат i -го OH в каждый момент времени наблюдения, f_c^i - сглаженные значения первуй производной (вектора скорости при изменении координат), $d^i = d_{3a0}^i + \Delta d^i$ - допустимое сближение OY з i -м OH, d_{3a0}^i - допустимое расстояние сближения OY с i -м OH; $\Delta d^i = \sqrt{\sum_{i=1}^k \left(\ddot{x}_i^i\right)^2} \frac{\Delta t^2}{2}$ - неопределенность, которая учитывает свойства перемещения i -го OH в k - мерном пространстве Q , \ddot{x}_i^i - вторая производная

соответствующей j-ї координаты i-го вектора скорости f_c^i i-го OH; Δt - інтервал времени измерения, Γ_{np}^i - граматика и правила создания соотношения при взаємодействии ОУ с i-м ОН и взаимодействия i-го ОН с другими ОН, $E^0 = (X^0, Y^0, A^0)$ - базис для ОУ, X^0 - множество потенциально возможных множество потенциально возможных мест нахождения OY в пространстве Q, Y^0 - характеристии переміщення OY в пространстве управляемых и полууправляемых состояний при налички ресурсов управления, которые необходимы для изменения динамических и кинематических динамічних характеристик в соответствии с допущением A^0 , которое учитывает прогноз, динамику и безопасность перемещения ОУ, $F^0 = (f_x^0, f_c^0, d^0)$ - свойства ОУ, которые относятся к перемещению в пространстве Q, f_x^0 - сглаженные значения координат ОУ в каждый момент наблюдения в пространстве Q, f_c^0 - сглаженные значения первуй производной (вектора скорости изменения координат ОУ), d^0 - допустимое сближение ОУ з ОН.

Описание динамики взаимного перемещения ОУ и ОН

 $F = \bigcup_{i=0}^{N} F^i, \forall f_x^i \subset f_x, \forall f_c^i \subset f_c, \forall d^i \subset d \ (d = \bigcup_{i=0}^{N} d^i, \ A = \bigcup_{i=0}^{N} A^i)$ в пространстве $G_{o\delta_M}$ з границей $\Gamma_{cp}(Q)$. Отображение соотношения F^i с учетом $\left(A^{i}, \stackrel{\cdot}{A^{0}}\right)$ и базиса $\left(E.\Gamma_{np}\right)$ на множество $G_{oбm}$ создает пространства $G_{oбm}^{i}$, которые являются недопустимыми для позиций X^{0} ОУ и параметров его перемещения Y^0 , что позволяет использовать принцип неопределенности при исследовании динамических характеристик поведения объекта в пространстве Q, которое может быть декомпозировано в классы эквивалентности.

Неопределенность пространства наблюдения (ПН)

 $\Delta x_i^z = \frac{p}{2m\Delta\dot{x}^z}$, где \dot{x}_i^z - первак производная соответствующей z-ї координаты i-го вектора скорости f_c^i i-го ОН, x_i^z - соответсвующая координата zвектора f_x^i *i*-го OH, m - масса i-го OH, p - коефициент, который определяется сущностью ПН, включая киберпространство. Для киберпространства значение m определяется в соответствии с теоремой мира.

Теоретико-множественная модель взаимодействия кибернетических систем в условиях конфликта, неопределенностей и ограничений

Элкменты киберпространства (КП)

$$\begin{cases} O = O^O \bigcup_{i=0}^{O} O^S \\ O^O = \bigcup_{i=0}^{N_O} O^O_i \end{cases} \text{ где } O \text{ - множество элементов кибернетической системы (КС); } O^O \text{ - множество объектов; } O^S \text{ - множество субъектов; } N_O \text{ - } O^S = \bigcup_{j=0}^{N_S} O^S_j \end{cases}$$

количество объектов; $N_{\scriptscriptstyle S}$ - количество субъекктов.

 $\underline{\textit{Множоство прав доступа елементов КС}}{R = \{r_r, r_w, r_o\}, \text{ де } r_r$ - право чтения, r_w - право записи, r_o - право обладания

Матрици доступа

$$\Omega[O^S,O^O]$$

элементу матрицы доступа $\Omega[O^S,O^O]$ добавляется элемент r_i ; α_2 - "удалить" право $r_i \in R, l = \{1,2,3\}$ в $\Omega[O^S,O^O]$ (удаление для субъекта O_m^S права доступа r_i к объекту O_n^O - оз матрицы $\Omega[O^S,O^O]$ удаляется элемент r_i ; α_3 - "создать" суб'єкт O_m^S (добавление в систему нового субъекта O_m^S - в матрицу доступа $\Omega[O^S,O^O]$ добавляется новий столбец и строка та рядок); α_4 - "создать" объект O_n^O (добавление в систему нового об'єкта O_n^O - в матрицу доступа $\Omega\!\!\left(O^S,O^O\right)$ добавляется новый столбец); $lpha_5$ - "уничтожить" субъект O_m^S (удаление из системы субъекта O_m^S - из матрицы доступа $\Omega\!\!\left(O^S,O^O\right)$ удаляется соответствующий столбец и строка); $lpha_6$ - "уничтожить" объект O_n^O (удаление из системы объекта O_n^O - из матрицы доступа $\Omega(O^S,O^O)$ удаляют соответствующий столбец).

<u>Изменение состояния КС</u> $Q \mapsto \alpha_i Q'$, где $Q = (O^S, O^O, \Omega(O^S, O^O))$ - предыдущее состояние; $Q' = (O^S', O^O', \Omega(O^S', O^O'))$ - новое состояние. α_i из множества аналогично A аналогічно F^i в TMM и определяет свойства i-го OH в КП, который является пространством G_{piw} .

 $\Gamma_{np} = (A, Q, R, C \subset Q)$, где A - множество нетерминальных позиций, O - множество терминальных (конечных) позиций, R - конечное множество правил (продукций), которое содержит хотя бы одну нетерминальную позицию, $Q^{'}$ - множество начальных нетерминальных позиций i-го OH.

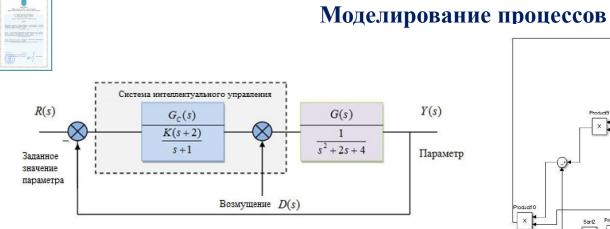


Рис. 3. СИУ с квазилинейной моделью

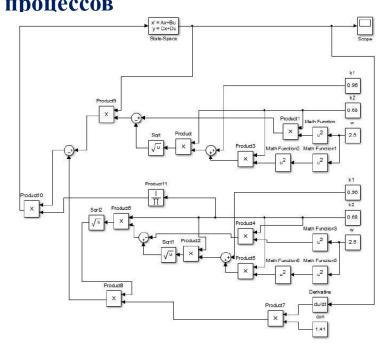


Рис. 4. Структурная схемаСИУ с оптимальным регулятором

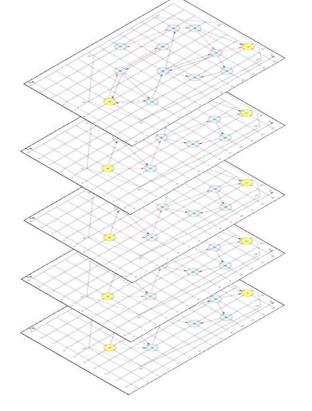


Рис. 6. Синтез решения

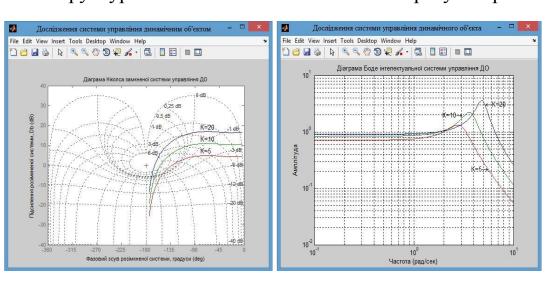


Рис. 5. Исследование АФЧХ

Спасибо за внимание