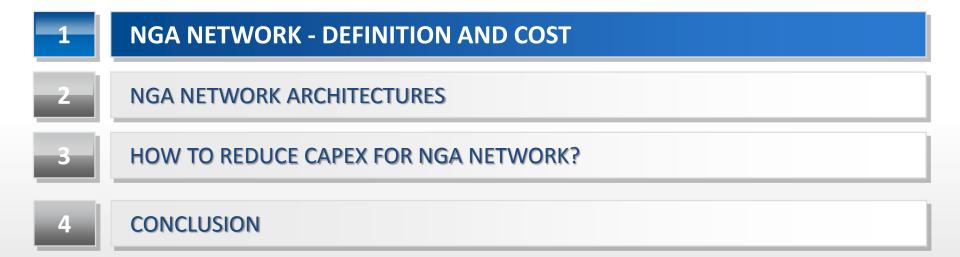


Construction a NGA network

Stjepan Vodolšak


CROATIAN REGULATORY
AUTHORITY FOR NETWORK INDUSTRIES
(HAKOM)

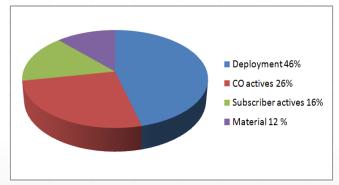
September 25th, 2017

1	NGA NETWORK – DEFINITION AND COST
2	NGA NETWORK ARCHITECTURES
3	HOW TO REDUCE CAPEX FOR NGA NETWORK?
4	CONCLUSION

3 **HAKOM © 2015** 26.9.2017.

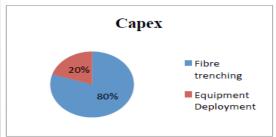
NGA network - definition

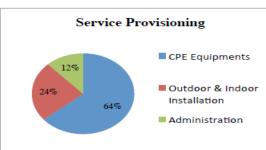
NGA network - **not fully copper-based access network**, capable of providing broadband access services with sustained bandwidths clearly higher than those available with fully copper-based access networks.

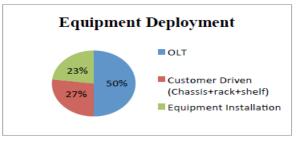

NGA network – <u>consist wholly or in part of optical elements</u> and are capable of delivering broadband access services with enhanced characteristics (such as higher throughput) as compared to those provided over already existing copper networks. NGA services can offer transfer rates of over 30 Mbps and therefore meet the broadband coverage target.

... many different definitions

FIBRE OPTIC CABLE GETS CLOSER TO THE SUBSCRIBERS.

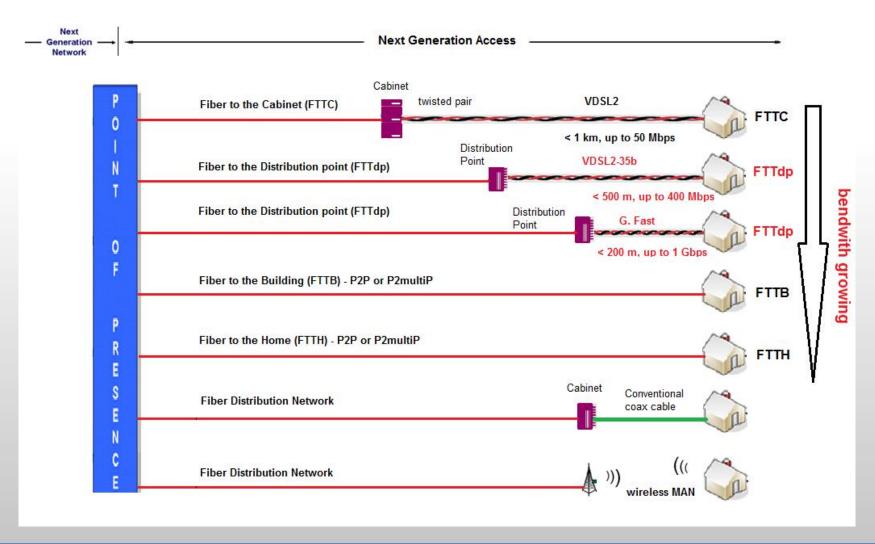



NGA network - cost



Cost breakdown of a FTTH project. Source: FTTH Council

- CO actives the active equipment in the central office
- Subscriber actives equipment installed on subscriber premises
- Material fiber optic cable, enclosures and other passive hardware

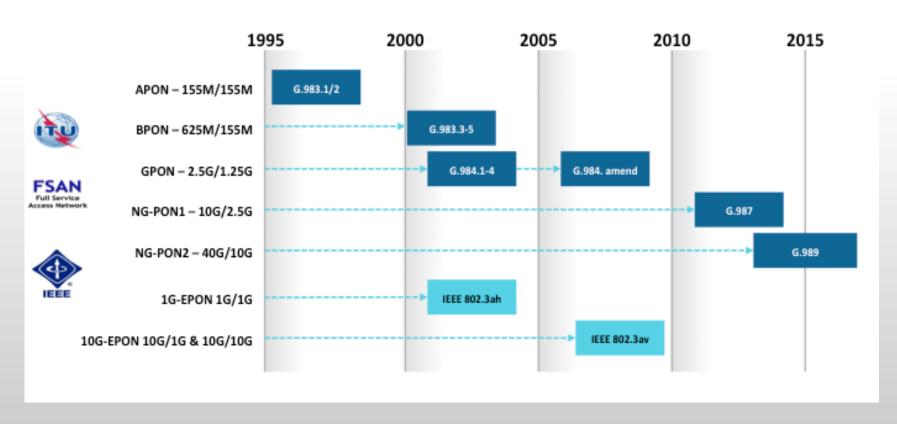

- Capex (67 %)
- Service provisioning (24 %)
- Operational cost (9 %)

Split up of costs for an FTTH network

DSL technology

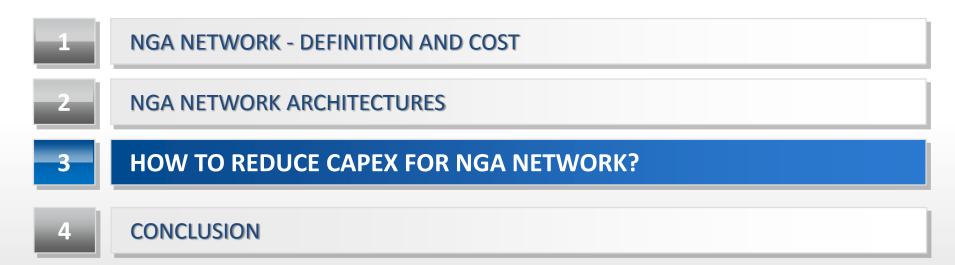
	17a profile	Vplus (35b profile)	G. Fast (106 MHz)
Short loops (< 250 m)	\square		
Medium loops (< 500 m)			
Long loops (> 500 m)	\square		
Density (max subs.)	400	200	16 - 48
Outside plant costs	\$	\$\$	\$\$\$
Standards	\square	\square	

Source: Alcatel-Lucent



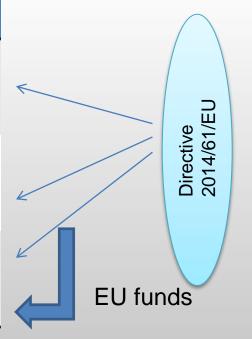
HFC technology

	Standardization	Max. capacity (downstream)	Max. capacity (upstream)
DOCSIS 1.0	1997	40 Mbit/s	10 Mbit/s
DOCSIS 1.1	2001	40 Mbit/s	10 Mbit/s
DOCSIS 2.0	2002	40 Mbit/s	30 Mbit/s
DOCSIS 3.0	2008	1,2 Gbit/s	200 Mbit/s
DOCSIS 3.1	2016	10 Gbit/s	1 Gbit/s
3.1 FULL DUPLEX	2017	10 Gbit/s	10 Gbit/s



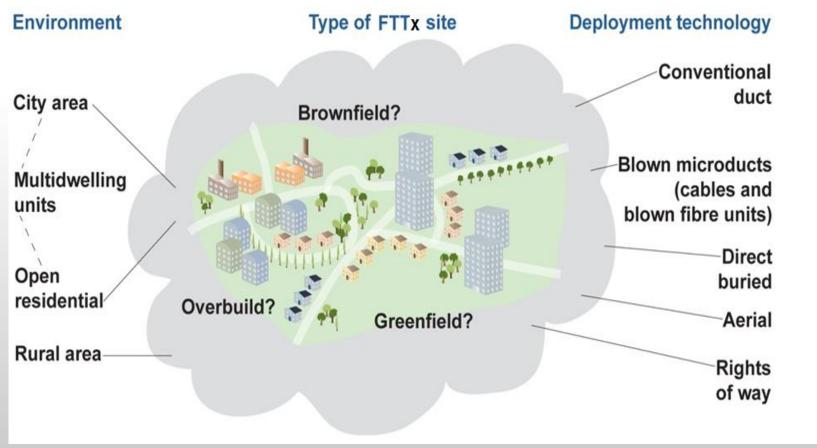
PON technology

PON Standards Evolution; Source: Alcatel-Lucent



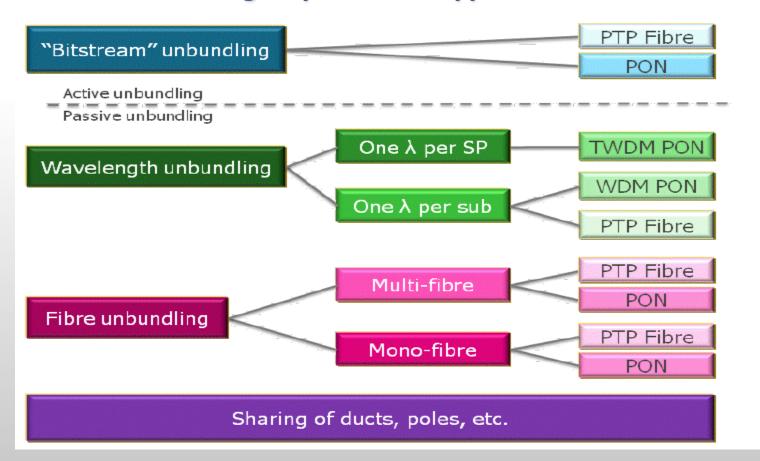
Investment - risk sharing

Municipality – M Incumbent operator – IO Alternative operator - AO	brownfield	greenfield
High urban area	M - ∑ IO - ☑ AO - ☑	M - X IO - √ AO - √
Urban area	M - X IO - ✓ AO - X	M - X IO - V AO - X
Rural area	M - 🗹 IO - 🔀 AO - 🔀	M - 🗹 IO - 🔀 AO - 🔀



- Directive 2014/61 on broadband cost reduction 4 main elements "pillars"
 - Access to and transparency of existing physical infrastructure
 - Coordination and transparency of planned civil works
 - ▶ Permit granting
 - In building infrastructure

All EU Member States must transpose the Directive into national legislation with the provisions taking effect by 1 July 2016


Choose the optimal solution for the dedicated area

Type of FTTx solution; Source: FTTH Council

№ Infrastructure sharing – open access approuch

Classification of infrastructure sharing for P2P and P2multiP; Source: FTTH Council

1 INTRODUCTION

2 NGA NETWORK ARCHITECTURES

3 HOW TO REDUCE CAPEX FOR NGA NETWORK?

4 CONCLUSION

HAKOM

Conclusion

- Sharing knowledge about importance of this infrastructure.
- Construction (Investment in) NGA networks has no alternative –
 it is "must have" infrastructure for society growth.
- 3. "No need to break the bank" reuse existing copper (coax).
- Invest in NGA network accordingly resources (financial & expert workers).
- 5. It's time for "rool out".

Stjepan Vodolšak

CROATIAN REGULATORY AUTHORITY FOR NETWORK INDUSTRIES

ROBERTA FRANGEŠA MIHANOVIĆA 9 HR-10110 Zagreb, CROATIA Tel: +385 (0)1/7007 007 Fax: +385 (0)1/7007 070

www.hakom.hr