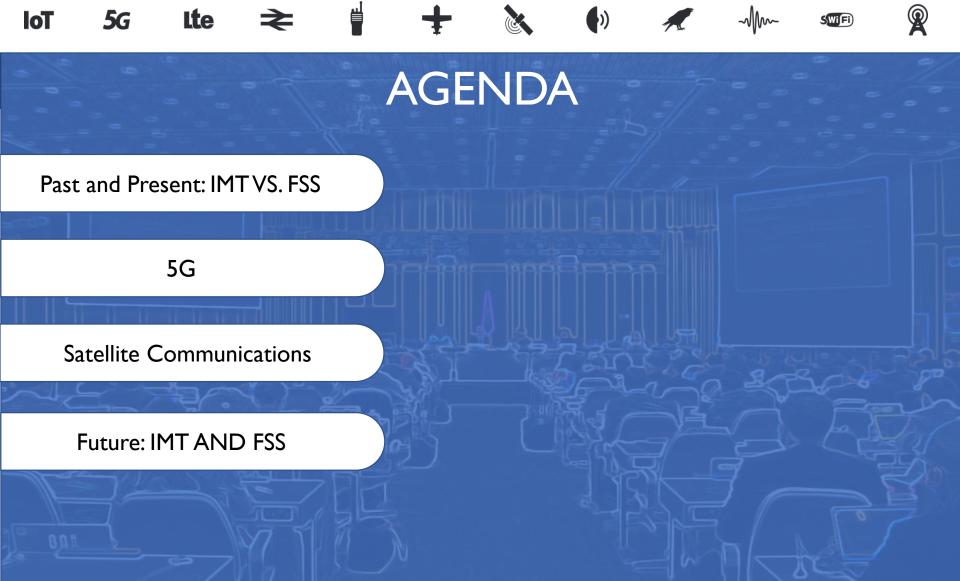
$\mathbf{IoT} \quad \mathbf{5G} \quad \mathbf{Ite} \quad \mathbf{1} \quad \mathbf{$


Sharing scenarios of 5G (IMT-2020) networks with the incumbent and future satellite communication systems

WRC-15 AI 1.1: IMT Identification, C-band specific:

3400-3600 MHz: Global allocation to IMT, except some APT countries
3600-3700 MHz: No IMT, except 4 CITEL countries
3700-4200 MHz: No IMT

Note: The 3600-3800 MHz band is harmonized for IMT use throughout the European Union by European Decision.

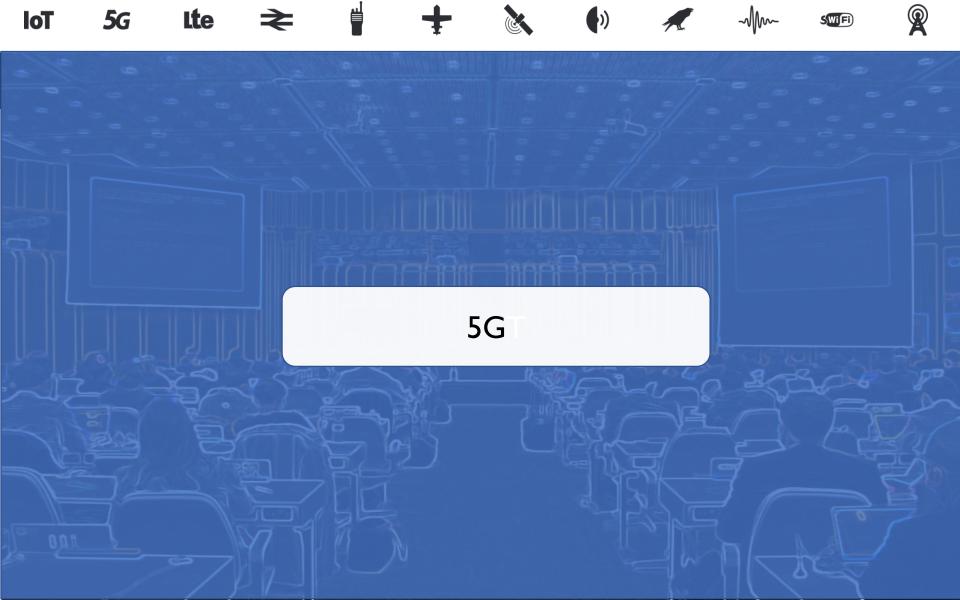
WRC-19 Agenda Item 1.13 – further spectrum identification for IMT

Over 33 GHz of spectrum are under study

Lte

5G

IoT


 Potential identification of IMT in frequency bands where FSS is allocated as a primary service:

Candidate band	Potential sharing band	Allocation in ITU Region I
24.25-27.5 GHz	24.65-25.25 GHz	FSS (E-s)
37.5-40.5 GHz	37.5-40.5 GHz	FSS (s-E)
40.5-42.5 GHz	40.5-42.5 GHz	FSS (s-E)
42.5-43.5 GHz	42.5-43.5 GHz	FSS (E-s)

Note: the 24.25-27.5 GHz ("the 26 GHz band") has been identified as a pioneer band for 5G mm-wave use in Europe.

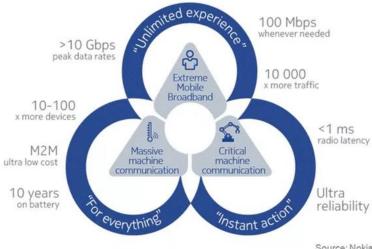
-Mm

5G is expected to address three key usage scenarios:

M2M:

Including the ability to support a

massive number of low cost IoT


connections with very long

including inside buildings

battery life and wide coverage

Enhanced Mobile Broadband:

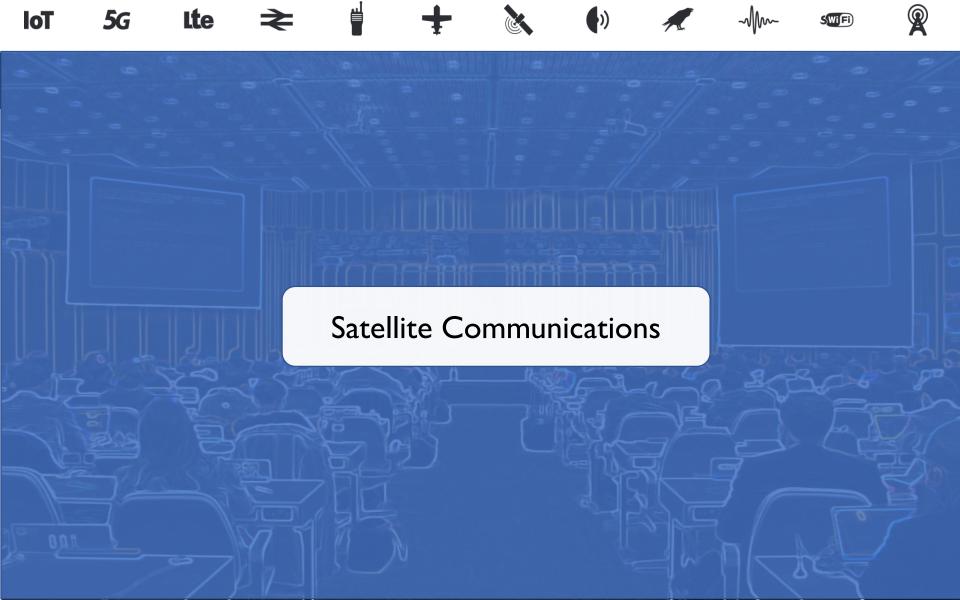
an evolution beyond 4G to provide multi-gigabit per second (Gbps) data rates for applications like virtual reality, UHD video streaming, and more

5G Use Cases and Requirements

Ultra-reliable communications: low latency (sub-1ms) and high availability, reliability and security to support services such as autonomous vehicles and remote surgeries

Source: Nokia

Above 24 GHz:


The availability of wide contiguous bands, which would allow the use of wider bandwidth channels (100–500 MHz or more), and advanced antenna technologies:

- Significantly higher data rates to be delivered in areas of very high MBB traffic density.
- Better range and reliability

I-6 GHz bands:

Offers a good mixture of coverage and capacity benefits. Specifically, **the C-band (3.3-3.8 GHz)** is expected to form the basis of many initial 5G services, which will later on spread into higher frequencies.

Satellite applications overview

Lte

TV Broadcast

Fixed VSAT

5G

ΙοΤ

Content Distribution

Government and Military Satcom

Mobile Backhaul

20cm Flat Panel Antenna

-Mm

SWifi

Safety services

M2M Communications

IP satellite video and hybrid broadcastbroadband

Comms on the move (planes, cars, ships, trains)

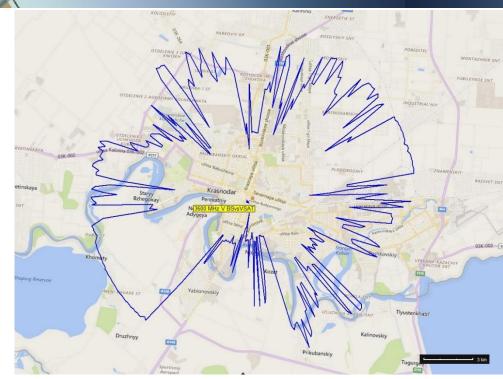
Above 24 GHz:

- Traditional applications demand more BW: Increased demand for TV services in HD format, and deployment of UHD
- New applications and non-GSO constellations demand higher data rates: A shift towards Ka-band, and later to 40 GHz (V-band), is expected
- C and Ku-bands are highly congested, while finding a space in the traditional Ka-band for a new system is also becoming a challenge

C-band:

- Wide coverage
- Favorable propagation characteristics
- Heavily used by satellites for decades

5G and FSS : C-band sharing scenario


5G BS parameters: Power: 5W Carrier BW: 20 MHz Gain: 5 dBi Rooftop antenna 2m

lte

IoT

5G

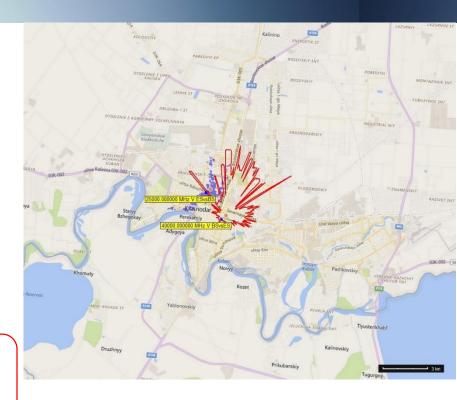
FSS ES parameters: Antenna Gain: 34 dBi Carrier BVV: 1 MHz

5G station is to be located at 1-12 km away from satellite ES to meet the criteria for compatibility

5G vs FSS: mm-wave bands

5G

ΙοΤ


lte

5G BS parameters: Power: 5W Carrier BW: 100 MHz Gain: 5 dBi Rooftop antenna 2m

FSS ES parameters: Antenna Gain: 45 dBi Carrier BW: 100MHz Power: 100W

Red contour: 5G BS "restricted" area around FSS ES at 40 GHz → much smaller than in C-band!

Blue coverage:Transmitting ES exceeds the compatibility criteria to a 5G BS at 25 GHz

5G and FSS frequency sharing: a glance into the future

凿

Past experience

lte

loT

5G

- Technical difficulties to implement frequency sharing
- Applications overlap is not significant
- Winner takes it all approach: mobile "attack" and satellite "defend" spectrum

Future of 5G and FSS co-existence:

- Higher frequency bands are easier to share
- Satellites will be an important part of the 5G ecosystem
- Frequency bands under discussions are of little current use

5G and FSS frequency sharing: Conclusion

The technical analysis of the satellite vs 5G co-existence is becoming increasingly relevant

The use of appropriate radio engineering tools is mandatory for informed decisions on this case of frequency sharing:

- 5G and satellite communication features implemented in one tool
- Interface with most updated databases of 5G and space/earth stations

$\mathbf{IoT} \quad \mathbf{5G} \quad \mathbf{Lte} \quad \mathbf{a} \quad \mathbf{1} \quad \mathbf{5G} \quad \mathbf{Lte} \quad \mathbf{a} \quad \mathbf{1} \quad \mathbf{5G} \quad \mathbf{Lte} \quad \mathbf{a} \quad \mathbf{1} \quad \mathbf{5G} \quad \mathbf{5G} \quad \mathbf{1} \quad \mathbf{5G} \quad \mathbf{1} \quad \mathbf{5G} \quad \mathbf{5G} \quad \mathbf{1} \quad \mathbf{5G} \quad \mathbf{5$

11 Boulevard Malesherbes, 75008 Paris FRANCE Tel +33 (0)1 53 30 81 41 Fax +33 (0)1 53 30 81 49

Thank you! Хвала!

