

Regional seminar for Europe and CIS on Spectrum Management and Broadcasting – Rome 29-30-31 May 2017

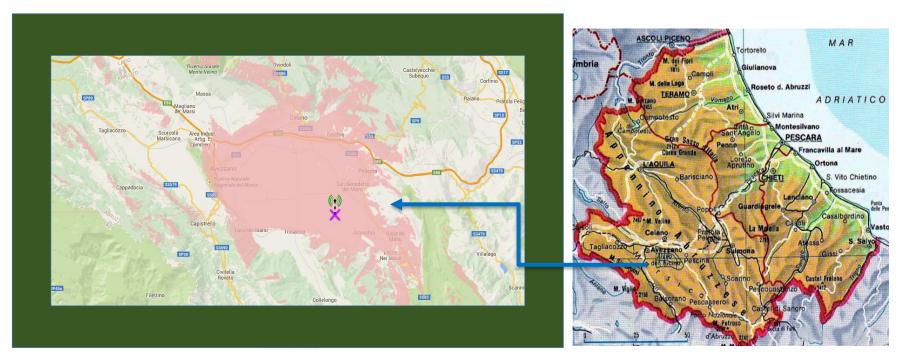
FS and FSS Coordination Procedure for 3.6-3.8 frequency band (Mauro Di Crescenzo)

Measurement Campaign preamble

HUAWEI, MISE, FUB and Telespazio personnel made up a technical team for an interference measurement campaign, which was held on the autumn 2016 at the Fucino Space Centre with the objective to evaluate interference effects between an LTE emitting radio base station and a FSS and MSS Receiving Earth Station operating in the same 3.6-3.8 GHz frequency band, following ITU- R S.2368 guidelines.

These tests proposed could be considered as a starting point for a wider Telespazio program and should be completed for the works of the following WRC.

Measurement Campaign objectives


The objective of this basic measurement campaign was the evaluation of interference effects caused by LTE radio base station and the relevant end user terminals versus a satellite receiving earth station. International Regulating Agencies are evaluating the possibility to share 3600-3800 MHz frequency band between FS and FSS. Expected interference effects have been described as:

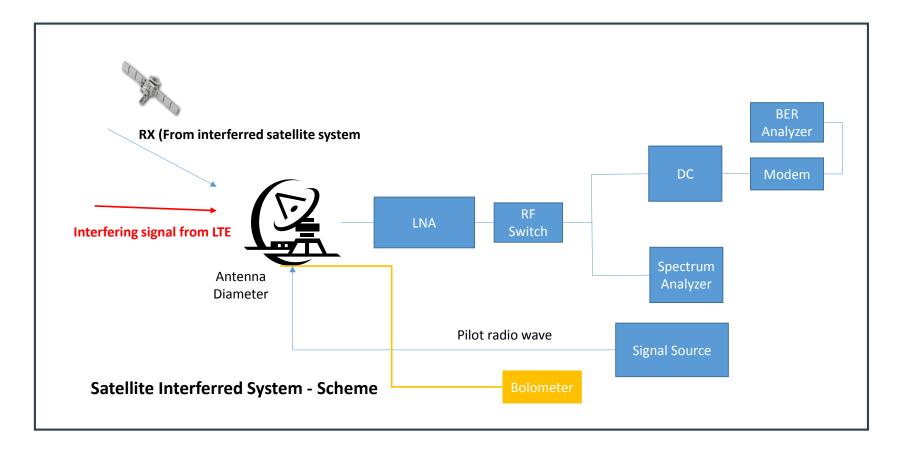
- In-band Interference (Frequency) Direct interference. Interfering signals (both direct and reflected) act in the region of linearity of interfered system equipment (LNA, LNB, etc.)
- Out-of-band Interference (Power) Satellite system are extremely sensible and are able to receive week power signal compared with the terrestrial one. There is the possibility of a saturation effect on satellite system due to the sources emitting in the overall C band (3625 – 4200 MHz).

Test Area definition

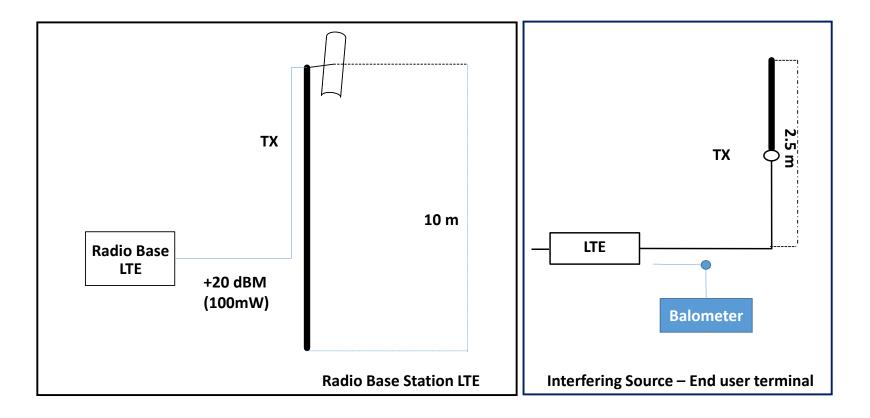
To analyze interfering effects the interfering source has been moved in the Fucino Space Centre visibility area (pink colored) and the relevant DeltaT/T have been detected for the satellite system under observation.

Test Area real view

Space Centre in Fucino


Telespazio's "Piero Fanti" Space Centre in Fucino (L'Aquila) has been active since 1963 and today, with its 170 antennas and 370,000 square metres, it is recognized as the first and most important teleport in the world for civilian use.

The Fucino Space Centre carries out in-orbit satellite control, space mission management and telecommunications, television and multimedia services. Operational logistics and field services are active in support to the services provided. It employs 250 workers including engineers, specialist technicians and operational staff.

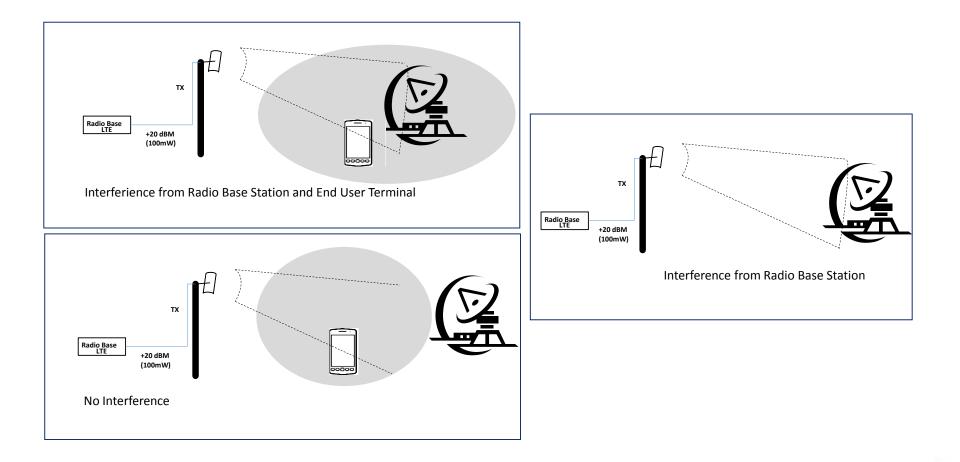


Satellite system: Interfered Source

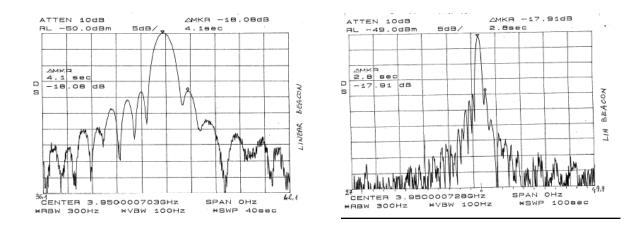
Radio Base Station: Interfering Source

Mathematical model and data collection: Altitude Profiles

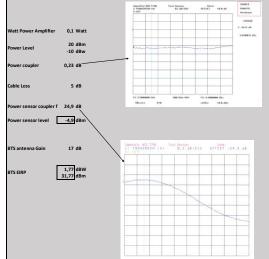
Lucano dei Marzi – Fucino Space Centre: altitude profile



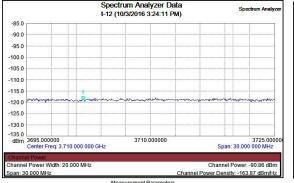
Anversa degli Abruzzi – Fucino Space Centre: altitude profile

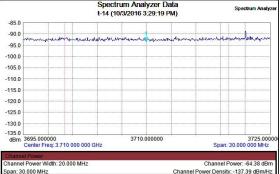


Mathematical model and data collection: Interference



Mathematical model and data collection: Sources


Satellite receiving antenna radiation pattern


Base Transceiver Station (BTS) EIRP (0.1 W is the minimum BTS Power, being the lowest value available in the configuration range).


Test Configuration - Noise System Tuning

	weasuremen		
Trace A data:Trace Average	10	Stop Frequency	3.725 000 000 GHz
Trace Mode	Average	Frequency Span	30.000 000 MHz
Preamp	ON	Reference Level	-85.000 dBm
Min Sweep Time	0.001 S	Scale	5.0 dB/div
Reference Level Offset	0 dB	Serial Number	1446150
Input Attenuation	0.0 dB	Base Ver.	V5.70
RBW	30.0 kHz	App Ver.	V6.95
VBW	3.0 kHz	Model	MS2720T
Detection	RMS	Options	9, 25, 31, 732, 880, 881, 883
Center Frequency	3.710 000 000 GHz	Date	10/3/2016 3:24:11 PM
Start Frequency	3.695 000 000 GHz	Device Name	CNCER Roma

3710 000000

Spectrum Analyzer Data

I-13 (10/3/2016 3:26:32 PM)

-85.0

-90 0

-95.0 Auros

-100.0

-105.0

-110.0

-115.0

-120.0

-125.0

-130.0

-135.0

Start Frequency

dBm 3695.000000

and when the

Center Freg: 3,710 000 000 GHz

mahar

Spectrum Analyz

3725 0000

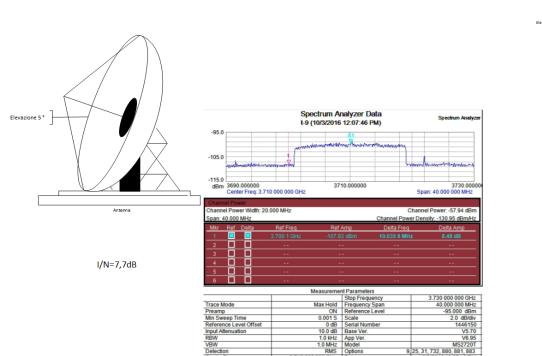
CNCER Roma

Span: 30.000 000 MHz

Equipment Noise

System Noise Level - Antenna 5° elevation

3.695 000 000 GHz Device Name System Noise Level - Antenna 60° elevation

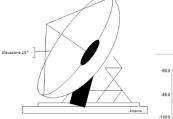

Test 1 - Direct interference with different satellite receiving

9, 25, 31, 732, 880, 881, 883

10/3/2016 12:07:46 PM

CNCER Roma

antenna elevation angle (5°, 25° and 50°)

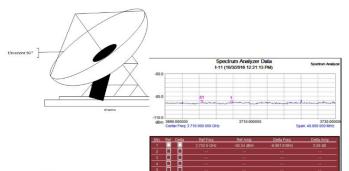


3.710 000 000 GHz Date

3.690 000 000 GHz Device Name

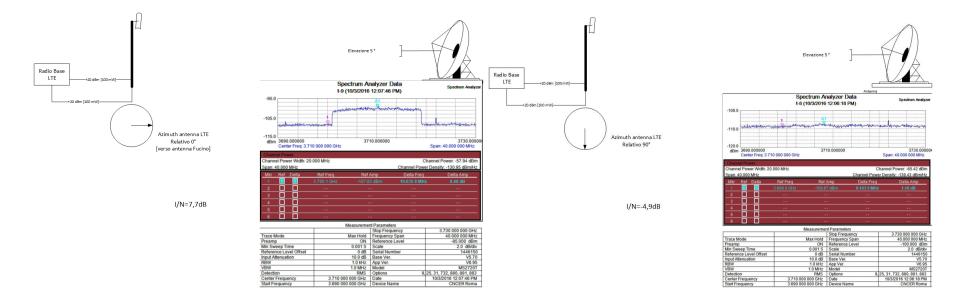
Detection Center Frequency

Start Frequency

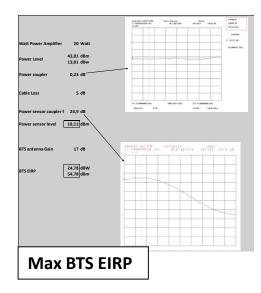


I/N=4,5dB

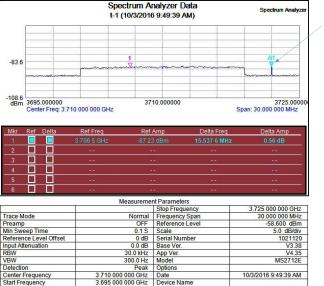
		Stop Frequency	3.730 000 000 GHz
Trace Mode	Max Hold	Frequency Span	40.000 000 MHz
Preamp	ON	Reference Level	-60.000 dBm
Min Sweep Time	0.001 S	Scale	5.0 dB/div
Reference Level Offset	0 dB	Serial Number	1446150
Input Attenuation	10.0 dB	Base Ver.	V5.70
RBW	30.0 kHz	App Ver.	V6.95
VBW	3.0 kHz	Model	MS2720T
Detection	RMS	Options 9	25, 31, 732, 880, 881, 883
Center Frequency	3.710 000 000 GHz	Date	10/3/2016 12:19:45 PM
Start Frequency	3.690 000 000 GHz	Device Name	CNCER Roma



I/N= -8,2dB



Test 2 - Reflected signals obtained rotating the LTE base radio antenna, at different satellite receiving antenna elevation angle.


Test 3 - Moving the LTE radio base outside Fucino's direct visibility area. (Anversa degli Abruzzi)

Using Max BTS EIRP from Anversa degli Abruzzi, the interfered antenna didn't receive any signal within measurable range. *Power Flux density determination*

Max BTS EIRP

Using the Continuous Wave (CW) Pilot comparing method, it has been carried out the Power Flux density received at Fucino Earth Station with BTS transmitting Minimum EIRP.

Power Flux Density measurement

CW Level at LNA Input = -125,9 dBm

Considerations

The large amount of DeltaT/T measurements demonstrate that a FS always causes harmful interference on FSS in Fucino Space Centre visibility (this is confirmed by test 1 and 2 results). The only solution to avoid such interference seems to define an area not allowed to FS sized as the visibility area of the teleport itself (this is confirmed by test 3 results). Anyway a DeltaT /T value just represent an alarm which claim for more accurate investigations about the nature of interference and an ad hoc simulation model should improve the accuracy of the analysis minimizing the protection area size. The data collected represent a valid test for the validation of the mathematical model reliability.

Mauro Di Crescenzo, Telespazio s.p.a., via tiburtina 965 00156 Rome Italy, +39 06 40793746, <u>mauro.dicrescenzo@telespazio.com</u>, Emanuele Belloni, Telespazio s.p.a., via tiburtina 965 00156 Rome Italy, +39 06 40793143, <u>emanuele.belloni@telespazio.com</u>, Certelli Marco, Telespazio s.p.a., via tiburtina 965 00156 Rome Italy, +39 06 40793419, <u>marco.certelli@telespazio.com</u>, Lavafila Irrera Antonino, Telespazio s.p.a., via tiburtina 965 00156 Rome Italy, +39 06 40793201, <u>antonino.lavafila@telespazio.com</u>,

THANK YOU FOR YOUR ATTENTION

