ITU-R Study Group 6

Workshop Terrestrial Multimedia Mobile Broadcasting (TMMB)

Planning and implementation

ÎŢŲ

8 March 2024, 0930-1200 hours (CET)

ITU-R Study Group 6

Workshop Terrestrial Multimedia Mobile Broadcasting (TMMB)

Planning and implementation

Draft time management plan

Time (CET)	Title	Speaker	Affiliation
0930-	Welcome and opening	Mr Amir NAFEZ	WP 6A Acting
0935			Chair/Moderator
		Mr Thiago SOARES	SG 6 Chair
0935-	TMMB System L network	Mr Walid SAMI	EBU
1020	planning		
1020-		Break	
1040			
1040-	TMMB System L compatibility	Ms Elena PUIGREFAGUT	EBU
1110	with DTT in the sub-700 MHz		
	band		
1110-	TMMB System L Case Study:	Dr Ronald LORENZ	BNE
1125	Germany		
1125-	TMMB System L Case Study: UK	Mr Mark JORDAN	BNE
1140			
1140-	Questions and Answers and	Mr Amir NAFEZ	WP oA Acting
1200	Closing		

EBU OPERATING EUROVISION AND EURORADIO

TECHNOLOGY & INNOVATION Get an edge

TMMB SYSTEM L NETWORKS PLANNING

WALID SAMI, EBU T&I

ITU WEBINAR 8TH MARCH 2024

PROGRAMME

- **1. Introduction**
- 2. What questions are we answering ?
- 3. 5G Broadcast network planning
- 4. Ongoing studies

5. Q/A

1. INTRODUCTION

Introduction

- TMMB System L: ETSI LTE-based 5G Terrestrial broadcast System ETSI TS 103 720 V1.2.1 (2023-06) – Called 5G Broadcast in the context of this presentation.
- > 5G Broadcast features:
 - Solution for the difficult reach of personal devices with broadcast content
 - > Standalone Downlink-Only System
 - > Meeting PSM requirements
 - Global system (3GPP-based)
- For standardization and market related aspects, see EBU <u>TR 054</u>
 "5G for the Distribution of Audiovisual Media content and services"

2. What questions are we answering ?

- > On the network planning side
 - > Which network topologies for 5G Broadcast ?
 - > How can existing broadcasting infrastructure be used ?
 - > What is the expected capacity of 5G Broadcast networks ?
 - > What frequency usage would 5G Broadcast networks require ?
 - > What should be further studied ?

3. 5G Broadcast network planning

5G Broadcast system parameters

- > OFDM (same as DVB-T/T2)
- > Allows use of SFNs (insertion of Guard Interval, GI)

Carrier Spacing delta fd [kHz]	Tu (μs)	Tcp / Gl (µs)	Ts (μs)	GI Ratio	GI Distance [km]	Approx. Max speed at 600 MHz @C/N 15 dB [km/h]	Compromise Between
15.00	66.7	4.7	71.40	5/71			SFN size and
15.00	66.7	16.7	83.40	1/4	5km		mobile
7.50	133.3	33.3	166.60	1/4	10km	700	reception
2.50	400	100	500.00	1/4	30km	370	
1.25	800	200	1000.00	1/4	60km	180	
0.37	2700	300	3000.00	1/9	90km	70	

Reception Modes

 (\mathbf{O})

SINR to capacity mapping for 200 μs CP

MCS Index	MOD	COD	Capacity (Mbit/s) In 5 MHz channel	Fixed SINR (dB)	Portable SINR (dB)	Mobile SINR (dB)
5	QPSK	0.369	2.161	4	4	4.6
6	QPSK	0.433	2.535	4.8	5	5.6
11	16-QAM	0.366	4.282	8.4	8.4	9.2
12	16-QAM	0.414	4.844	9.2	9.2	10.2
15	16-QAM	0.602	7.043	12.4	12.4	14
16	16-QAM	0.645	7.543	13.2	13	15.2
17	64-QAM	0.430	7.543	13.8	13.4	15.8
18	64-QAM	0.444	7.792	14.4	14.4	17
19	64-QAM	0.508	8.915	15.6	15.4	19.6
20	64-QAM	0.551	9.664	16.8	16.4	22.8
21	64-QAM	0.593	10.413	17.8	17.2	
22	64-QAM	0.636	11.162	19.4	18.2	
23	64-QAM	0.699	12.262	22.8	21.8	

5G Broadcast planning levels for SINR of 10 dB

Reception parameters	Car mounted (CM)	Handheld In-Car	Handheld portable outdoor	Fixed rooftop (FRT)	Portable indoor (PI)	Handheld portable indoor (P-H/Internal Antenna)
Type of reception	Mobile	Mobile	Portable	Fixed	Portable	Portable
Path type	Land	Land	Land	Land	Land	Land
Receiver antenna gain, including possible body loss and receiver diversity gain (dBi)	3	-5.8	-5.8	13	1.7	-5.8
Entry loss (dB) – Building/vehicle	0	9	0	0	11	11
Standard deviation associated with entry loss (dB)	0	5	0	0	6	6
Receiver height (m)	1.5	1.5	1.5	10	1.5	1.5
Receiving installation feeder loss (dB)	0	0	0	4	0	0
Other losses (dB)	1	1	1	1	1	1
Receiver strategy for signals from the same SFN	Maximum C/I					
Location variation standard deviation (dB)			5.5			
Receiver Noise Figure (dB)	6	9	9	6	9	9
Usual criteria in terms of percentage of locations to protect in a small area	95%	95%	95%	95%	95%	95%
Minimum median FS at reception height (dBµV/m)	47 (@1.5m)		60 (@1.5m)	41(@10m)		

Network type and site density

> High Power High Tower sites

Layer	ISD	Antenna height	ERP	Site density
	(km)	a.g.l. (m)	(in a 8 MHz channel)	(per 10000 km²)
HPHT	80	300	80 dBm / 100 kW	1.8

> Medium Power Medium Tower sites

Layer	ISD	Antenna height	ERP	Site density
	(km)	a.g.l. (m)	(in a 8 MHz channel)	(per 10000 km²)
MPMT	20	80	59.5 dBm/900 W	28.9

> Low Power Low Tower sites

Layer	ISD	Antenna height	ERP	Site density
	(km)	a.g.l. (m)	(in a 8 MHz channel)	(per 10000 km²)
LPLT	3	30	57 dBm/500 W	1283

(\mathbf{O})

Single topology networks

- High Power High Tower (HPHT)
- Medium Power Medium Tower (MPMT)
- > Low Power Low Tower (LPLT)

Mixed topology networks

		/		- \ / - \ / - \ / - \ / - \ / - \
Layer	ISD (km)	Antenna height a.g.l. (m)	ERP (in a 8 MHz channel)	Site density (per 10000 km²)
HPHT	80	300	80 dBm/100 kW	1.8
MPMT	23.1	80	67 dBm/5 kW	10.8 (1 row) 21.6 (2 rows)

Frequency reuse

>

> Reuse 1 (SFN)

> Reuse 3

 Reuse 3 MFN clusters of 7-site SFNs

 Reuse 4 MFN clusters of 7-site SFNs

Simulation method

 Monte Carlo method used to avoid approximation of wanted and interfering signal summation in SFN networks

Simulation method

- > Calculates a CDF for SINR at each pixel, so we can derive:
 - > the SINR corresponding to a fixed target Location Probability (LP), or
 - > the Location Probability (LP) corresponding to a fixed target SINR

Standalone Broadcast Networks (HPHT/MPMT)

- > Objective: Full area coverage (all pixels) with 95% LP in each pixel
- > Result below for Handheld Portable outdoor
- > Still require a relatively dense network (Mixed HPHT and 2 rows of MPMT sites inside an HPHT coverage area)

Layer	ISD (km)	Antenna height a.g.l. (m)	ERP (in a 8 MHz channel)	Site density (per 10000 km²)
HPHT	80	300	80 dBm/100 kW	1.8
MPMT	23.1	80	67 dBm/5 kW	21.6 (2 rows)

Standalone Broadcast Networks (LPLT) (O)

- > Objective: Full area coverage (all pixels) with 95% LP in each pixel
- > Result below for Handheld Portable outdoor
- > Reuse 1 and reuse 4 with MFN of 37 SFN clusters maximize the SINR
- > Requires very dense network (1283 LPLT sites per 10000 km²)

Layer	ISD (km)	Antenna height a.g.l. (m)	EIRP (in a 5 MHz channel)	Site density (per 10000 km²)
LPLT	3	30	57 dBm/500 W	1283

Hybrid Broadcast/Broadband Networks with (O) seamless switchover in the receivers

- Objective: Ensure an acceptable distribution of the Location Probability (LP) across the coverage area for a fixed target SINR
- > The possibility of switching seamlessly to Unicast allows
 - Reducing the target LP to less than the 95% required in the standalone Broadcast network → less number of sites required
 - > Improving the quality of reception be avoiding interruptions → The unserved locations by the broadcast network can be served by the Unicast Mobile network using the seamless switchover in the receivers
- > There is a need for a criteria to define the acceptable reduced LP
 - > In real networks, the criteria could be the population coverage
 - > In theoretical network, it could be the average LP across the network.

Hybrid Broadcast/Broadband networks

- > Results for a single HPHT network for Handheld Portable outdoor reception
- > Fixed target SINR of 13 dB
- > Average LP 56% insufficient

Layer	ISD (km)	Antenna height a.g.l. (m)	ERP (in a 8 MHz channel)	Site density (per 10000 km²)
HPHT	80	300	80 dBm/100 kW	1.8

Hybrid Broadcast/Broadband networks

- > Results for a mixed HPHT/MPMT network for Handheld Portable outdoor reception
- > Same fixed target SINR of 13 dB
- > Average LP = 91.3 %
- > Reduced density, using only one row of MPMT sites at the edge of each HPHT coverage area.

Layer	ISD (km)	Antenna height a.g.l. (m)	ERP (in a 8 MHz channel)	Site density (per 10000 km²)
HPHT	80	300	80 dBm/100 kW	1.8
МРМТ	23.1	80	67 dBm/5 kW	10.8 (1 row)

SFN versus MFN

For further details, see section 1.5 "Coverage of national or regional border areas" of Annex 6 to 6A/484

SFN versus MFN

Possible solution

4. Ongoing studies

On the regular networks

- Further simulations on MFN scenarios and other network characteristics
- Aim is to reduce the site density by optimizing the various networks and planning parameters

On case studies (using real Network data)

- Continue studying ways to optimize the broadcast networks by making use of broadcast / Unicast seamless switchover at the receiver.
- Validation with field trials

5. QUESTIONS & ANSWERS

MANY THANKS !

sami@ebu.ch

tech.ebu.ch

https://tech.ebu.ch/groups/sspt