

About TTA SPG33

- Established July 6, 2017
 - Registered as an IEG at the same month
- Members
 - About 30 members from Industry/Research Institutes/Academia
- Chairman
 - Prof. OH, Seong-Jun, Korea University
 - (email) seongjun@korea.ac.kr

IEG History for IMT-Advanced, TTA PG707

- Set up on July 31, 2008
 - Registered as an evaluation group on Dec. 2008
 - Submitted the evaluation reports on June 2010

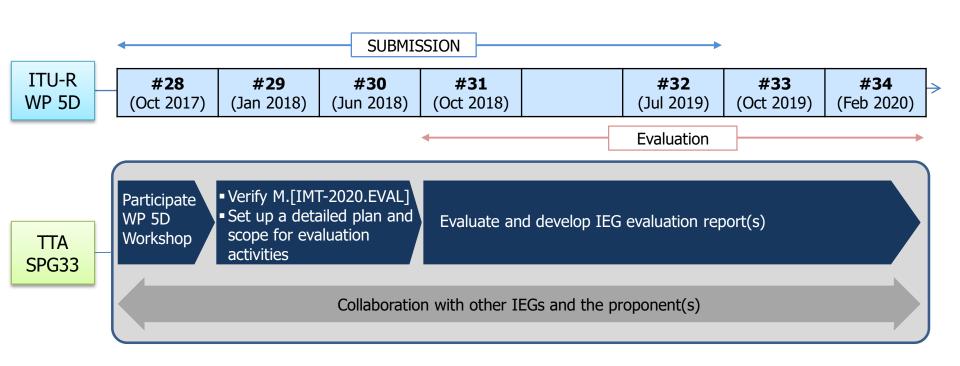
Activities

- Regular member meetings to discuss the evaluation issues
- Harmonization of PG707 members' evaluation works from
 - University, industries and research institute sectors
- Shaping Drafting Group for Evaluation Reports
- Cooperation: EVAL SIG (Special Interest Group) in CJK IMT meeting
- Contributions to ITU-R WP 5D
 - LLS results / Channel Model C-source codes
 - M.2135 corrections
 - Evaluation reports: IMT-ADV/18 and IMT-ADV/19

TTA SPG33 Work Scope

- Independent Evaluation Group registered in ITU-R
 - Terms of Reference includes
 - Evaluate proposals of IMT-2020 RIT/SRIT
 - Develop / Submit the report(s) to ITU-R
 - Cooperate and coordinate with other evaluation groups
- Complementary Works
 - Check if the proposal(s) satisfies the requirements according to the guidelines of ITU-R M.[IMT-2020.EVAL].
 - May provide complementary evaluation works in order to make sure of evaluation results against possible unclear issue, if any.
- Views on the other group's Evaluation Works
 - May provide SPG33 views on the evaluation works from other registered evaluation groups based on the consensus among TTA SPG33 members, if necessary.

5


ITU-R M.[IMT-2020.EVAL] Three Usage Scenarios and Thirteen Requirements

Technical requirement	Usage scenarios applicability		
	еМВВ	mMTC	URLLC
4.1 Peak date rate	\checkmark		
4.2 Peak spectral efficiency	\checkmark		
4.3 User experience data rate	\checkmark		
4.4 5th percentile user spectral efficiency	\checkmark		
4.5 Average spectral efficiency	\checkmark		
4.6 Area traffic capacity	\checkmark		
4.7.1 User plane latency	\checkmark		\checkmark
4.7.2 Control plane latency	\checkmark		\checkmark
4.8 Connection density		\checkmark	
4.9 Energy efficiency	\checkmark		
4.10 Reliability			\checkmark
4.11 Mobility	\checkmark		
4.12 Mobility interruption time	\checkmark		\checkmark
4.13 Bandwidth			

Simulation Expected

- System-Level Simulation (SLS) for eMBB
 - Average spectral efficiency
 - Area traffic capacity
 - 5th percentile user spectral efficiency
 - User experienced data rate (Multi-Layer SLS)
- Link-Level Simulation (LLS) for eMBB/URLLC
 - Mobility (eMBB)
 - Reliability (URLLC)
- SLS or LLS for mMTC
 - Connection density

Provisional Workplan

Thank you

