International Telecommunication Union

ITU WORKSHOP Overview of activities of ITU-R Study Group 3 on radiowave propagation: (The Hague, 10 April 2014)

SG3 Software, Databanks and Testing Procedures

ITU WORKSHOP Overview of activities of ITU-R Study Group 3 on radiowave propagation

The Hague, The Netherlands 10 April 2014

www.itu.int/go/rsg3-EuCAP14

Antonio Martellucci Carlo Riva

- Introduction and Background
- Terms of Reference, Work Method
- Experimental Data
- Testing of Models
- Conclusions, The way ahead

Introduction and Background

Introduction and Background

Example: workflow for tropospheric propagation

ITU-R P Recommendations

- Option between:
 - User provided data
 - global maps/standard parameters
- Some recs. require the use of other recs. (nested recs.)
 Example: ITU-R P. 618

RW Propagation Models :

- Input parameters:
 - Tables
 - Digital Maps
 - Site specific data (e.g. raingauge VS rain maps)
- Provided as:
 - Text in Annex (a kind of cooking recipe)
 - SW Code (Source AND/OR Executable)
- Needs experimental data for:
 - Verification of accuracy of current models
 - SG3 Decision for adoption of a new model

ITU-R P Recommendations and SG3 docs

- P 311: Acquisition, presentation and analysis of data in studies of tropospheric propagation
- Format of Tables for experimental data submission
- <u>3M Fascicles</u> (background and reference information on P-311)

Digital Products needed for Models Computer Programs Digital Maps Reference Numerical Parameters Measurement Databanks Digital products and P-Recs Integral part = required to apply the recommendation Supplemental = SW implementing the procedure in an Annex

SW Integral part of a Recommendation

SW Integral part of a Recommendation

Review and distribution of experimental data

	🐸 DB5G3 - Search data set - Mozilla Firefox	
	Eile <u>E</u> dit <u>V</u> iew <u>G</u> o <u>B</u> ookmarks <u>T</u> ools <u>H</u> elp	
<u> </u>		
	Main menu	Log out
	Search in data set C2_1	
	Please select your search criteria.	
Main menu	Date Format is : yyyy/MM/dd Decimal separator is : .	
Browse tables	R_CTRY equal	
browse cables	R_LATITUDE = C deg Range from -90.0 to 90.0	
Data Sets for Earth-space path :	R_LONGITUD =	
Annual rain att. stat. (C2_1)	SATEL_POS = deg Range from 0.0 to 360.0	
Fade duration stat. (C2_2)		
Site diversity stat. (C2_4)	START_DATE equal in and and	
Annual XPD stat. (C2_5A)	END_DATE equal	
Annual XPD cond. to CPA (C2_5B) Ampl. sciptillation stat. (C2_6)	M DURATION = M 365 days	
Std dev of scintillation (C2_7)		
Slant path fade slope stat. (C2_8)		
Done		
DBSG3 Vers?	Done	
llcor		data flagging)
0261		

SG3 Classification of experimental Tables

- Part I: Terrestrial line-of-sight path data
- Part II: Earth-space path data
- Part III: Terr. trans-horizon path & rain scatter data
- Part IV: Radiometeorological data
- Part V: Terrestrial land mobile data
- Part VI: Terrestrial point-to-area data
- Part VII: Data for mobile-satellite services
- Part VIII: Vegetation and building data
- Part IX: Noise

Radiometeorological data Part IV: Table IV-1: Statistics of rain intensity Rain integration time conversion factor Table IV-2: Annual statistics of sky noise temperature Table IV-3: Statistics of mean surface refractivity Table IV-4: Table IV-5: Statistics of rain event duration Table IV-6: Statistics of evaporation ducts Table IV-7: Statistics of cloud cover Table IV-8: Spatial statistics dependence of rain intensity Table IV-9: Total columnar water vapour content Total columnar cloud liquid water content Table IV-10:

Part II: Earth-space path data

- Table II-1: Slant path annual rain atten. and rain rate statist.
- Table II-2:
 Slant path worst-month rain attenuation statistics
- Table II-3: Slant path fade duration statistics
- Table II-4: Slant path site diversity statistics
- Table II-5a: Slant path annual XPD statistics
- Table II-5b: Slant path annual XPD statistics conditioned to CPA
- Table II-6: Slant path statistics of amplitude scintillations
- Table II-7: Slant path standard deviations of scintillations
- Table II-8: Slant path fade slope statistics
- Table II-9: Slant path time diversity statistics

Table II-10: Slant path instantaneous frequency scaling statistics

• Earth-space path (Table C2)

Tabl e	Statistics	Total number of statistics	Number of statistics inserted since 2008	
2-1	Slant path annual rain attenuation and rain rate statistics	612	16	
2-2	Slant path worst month rain attenuation and rain rate statistics	77	6	
2-3	Slant path fade duration statistics	86	17	
2-4	Slant path site diversity statistics	59	0	
2-5a	Slant path annual XPD statistics	41	0	
2-5b	Slant path annual XPD statistics conditioned to CPA	43	0	
2-6	Slant path statistics of amplitude scintillations	36	0	
2-7	Slant path standard deviations of scintillations	52	0	
2-8	Slant path fade slope statistics	0	0	
2-9	Slant path time diversity statistics	0	0	
2-10	Slant Path instantaneous frequency scaling statistics	0	0	

- Slant path annual rain attenuation and rain rate statistics (Table 2-1): Table Keeper Carlo Riva, Politecnico di Milano, Italy
 - 612 statistics, Single year or multiple years
 - Attenuation and rain rate exceeded for probability from 0.001 % to 50 % (20 points, 4 per decade: e.g. 1, 2, 3 and 5)
 - Beacon, Satellite link derived or radiometric derived attenuation
 - Latitude range: from 37.9 deg. S to 67.5 deg. N (60 statistics between +/-25 deg)
 - Observation periods in the interval 1968-2012
 - Frequency: 4-49.5 GHz (313 above 17 GHz)
 - Elevation angle: 3.3 90 deg
 - Statistics flagged and selected for testing by visual inspection :
 - 174 (excess/rain attenuation)
 - 97 (total attenuation)

- Slant path annual rain attenuation and rain rate statistics (Table 2-1) Testing procedure:
 - Test variable as from of ITU-R Rec. P.311
 - Error calculated for each experiment and each probability in the validity range of the distribution (see flags)
 - Average, std and rms error for each probabilities averaged over all the selected experiments and weighted with their duration
 - Average, std and rms averaged over the probability range of interest and over all the experiments
 - Selection of the best model according to the rms (and the average) errors
 - Test with input measured rain rate distributions or rain maps (ITU-R Rec. P.837)
 - Test for excess and total attenuation
 - Test in different probability/frequency/elevation/latitude ranges

Te

• Slant nath annual rain attenuation and rain rate statistics (Table 2-1)

			AVERAGED	ERRORS	SUMMARY				
÷	*******	***	**********	*******	******	***	*******	**	
I	Method	1	AVERAGED	ERRORS	SUMMARY	I	WEIGHT	I.	
I		I	MEAN	RMS	STD.DEV.	I	YEARS	I	
ī	ASSISEI	1	-9.7	33.2	31.8	1	63.1	1	
1	BRAZIL		-13.3	31.8	28.9		76.1		all
1	BRYANT		-5.1	28.6	28.1		75.9		
1	CRANETC	1	-1.3	40.5	40.4		76.5	1	
1	DAHRAIN		-10.1	28.0	26.1	1	79.8	1	Jroc
1	EXCELL		-1.7	29.2	29.1	1	79.8	1	2162
	FLAVIN		-7.9	27.7	26.6		76.1		
1	GARCIA		-21.8	35.9	28.5		76.1	1	
1	GLOBAL	1	8.3	33.9	32.9	i.	75.3	- i -	de)
1	ITU-618		-9.1	31.6	30.3	1	79.8	i.	0 /
÷.	JAPAN	- i -	-12.7	32.7	30.2	i	70.2	i	
÷.	LEIWA-S	1	-22.1	34.5	26.5	i.	48.9	i.	Dee
1	MATRICC	- i -	3.5	32.5	32.3	i.	78.5	i.	Rec.
i.	SAM	- i -	-9.1	35.1	33.9	i	76.1	i	
ī	SVIATOG	1	-21.9	41.2	34.9	I	76.1	i	

Historical Example: from COST 255 FR

ITU Workshop: Overview of activities of ITU-R Study Group 3 on radiowave propagation, 10 April 2014, The Hague 21

Method of work Demanding but consolidated for measurements > New role for SW, but method ? Need for new propagation data New campaigns (climates, frequencies, systems) Improvement of accuracy > New parameters New/reviewed test variables Data flagging and Test procedures