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BACKGROUND

Deep Learning Models Today : 
During the last few years, deep learning 
has been the basis of many successes in 
artificial intelligence, including a variety 
of applications in computer vision, 
reinforcement learning, and natural 
language processing. But it has the 
following challenges:

• Millions (and even billions) of 
parameters

• Demands heavy computation 
power

• Too large to be deployed on 
edge devices.

• Difficult to be operated in real
time.

• Large latency



PRIOR ARTS

Model Pruning Model Quantization Knowledge Distillation

A model optimization 
technique that involves 
eliminating unnecessary values 
in the weight tensor

The process of reducing the number 
of bits that represent a number (the 
format has so far been 32-bit 
floating point, or FP32).

An effective technique to transfer 
information from one network to 
another network whilst training 
constructively.

Challenges
• Very difficult to train from 

scratch.
• Suffers from some loss of 

accuracy.
• Difficult to generalise.

Challenges
• Reduced memory footprint but 

not much increase in computing 
efficiency.

• Difficult to generalise

Challenges
• A teacher can’t effectively distill it’s

knowledge to students for all the 
data distribution.

• Not much insight on best student 
teacher combination.

Hardware Constraints: TensorFlow, TFLite, MXNet, and PyTorch enable developers to quantize 

models but they are not well suited to execute on a variety of hardware platforms. Eg. TFLite is 

optimized to run inference on ARM CPU edge devices but it does not have efficient support for 

Intel CPUs and Nvidia GPUs. **



Knowledge Distillation (KD) : (S-T) learning framework 

A large (teacher) pre-trained network is used to train a smaller (student) network. However, different student 

architectures can perform better on different distributions data. A teacher can’t effectively distill it’s knowledge to 

students for all the data distribution. To alleviate this shortcoming, we introduce multi-student knowledge 

distillation, which employs a multiple student model to bridge the gap between the data distribution and 

the student meta architecture. To the best of our knowledge we are the first group to attempt multi-student 

KD framework.



RESOURCES

CIFAR-10 dataset

The CIFAR-10 dataset consists of 60000 32x32 

colour images in 10 classes, with 6000 images per 

class.

GPU: Nvidia P100

RAM: 16GB

LIBRARIES:

CUDA 10.0 

CUDNN 8.0

Pytorch 1.6.0

Python 3

Torchvision



Teacher network T :    ResNet50

Student network S1 :   DenseNet121

Student network S2 :   GoogleNet

HIGH LEVEL OVERVIEW OF OUR APPROACH - TRAINING

MODEL SELECTION

AE          :     Absolute Error

BCE Loss:    Binary Cross Entropy Loss

Distillation Loss =KD Loss+ BCE Loss 

MULTI-STUDENT KD



Student network S1 :   DenseNet121

Student network S2 :   GoogleNet

Here the Model Selector extracts the features of the 

input data and estimates the student model that 

would work better on that input data and route the 

data to the corresponding student model to perform 

the desired task. 

Final Stand Alone Architecture – Inference Phase

Proposed Architecture for Inference



DenseNet121- Student Model 1
Inception GoogleNet – Student model 2

META ARCHITECTURE

Curtesy: Google Images 

Teacher 

Model-

Resnet 50



MODEL ATTRIBUTES

Model Attribute Teacher Student 1 Student 2 Model Selector

Model ResNet50 DenseNet121 GoogleNet CNN (3 Layers)

No. of Parameters 25.6M 3.27M 6.07M 0.55M

Parameter size 98MB 31MB 25MB 2.21MB

No. of layers 50 11 22 3

WORKFLOW:

1. Training the teacher model.

2. Using the softmax outputs of teacher to train both the student networks.

3. Optimising both Binary Cross Entropy loss and knowledge distillation loss.

4. Using a model selector network to learn the attributes of the input image data and map it to the 

corresponding student model. (by learning the attributes of the model also)

5. Optimising the model selector loss over the period of time.

6. Model selector becomes better at predicting the corresponding student model for a given data that 

would give better predictions.
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COMPRESSION

Compression with respect to Teacher

Compression of Individual Student Models No. of Parameters Space consumed MAC

DenseNet-121 87.30% 68.40% 21%

GoogleNet 76.30% 74.49% 68.10%

Compression with our proposed approach No. of Parameters Space consumed

DenseNet-121+ Model Selector 85.17% 66%

GoogleNet+Model Selector 74.15% 72.23%

Overall compression No. of Parameters Space consumed

Teacher(ResNet-50)+DenseNet-121+GoogleNet+ Model Selector 61.40% 40.61%



SELECTION CRITERIA

WHY DensNet121 and GoogleNet as Student Models??

• We observed that both model’s behaviour was complementary to each other across all the classes 
unlike other combinations.

• Also, the chosen models had very less number of parameters (3M and 6.07M) and provided nearly the 
same accuracy as the teacher.

Model Selector

• Model Selector plays a fundamental role in identifying 

which student model will give the best accuracy for a 

given image data. So, the role of the model selector is 

to extract the features from the input image data and 

select the corresponding student model which will 

provide the best estimation.

CNN 

Model

Batch Norm Without Batch 

Norm

2 Layer Poor 

performance

Poor 

performance

3 Layer Good

Performance

Poor 

performance

4 Layer Poor 

generalisation

Poor 

generalisation
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EPOCHS VS ACCURACY

Student 1 Student 2

Model Accuracy

Teacher: ResNet50 81%

Student1:DenseNet121 74.19%

Student2: GoogleNet 73.21%

Model Selector + Students(Both 1 and 2) 81.79%

It can be inferred from the table that 

both the student model perform much 

better when augmented with a model 

selector.

We observe that the individual student model’s 

accuracy and the accuracy of the proposed 

approach has not been compromised and in 

fact exceeded the teacher models accuracy. 

We are able to gain(achieve) this accuracy with 

a huge margin of compression . (Refer 

compression Table)



ML ARCHITECTURE FOR TRAINING – ITU FORMAT



ML ARCHITECTURE FOR INFERENCING ITU FORMAT



EDGE IMPLEMENTATION OVER NETWORK



CONCLUSION

In this work, we observe that the underlying data geometry affects the models predictions and 

convergence to a great extent. Our key finding is that, knowledge Distillation (KD) is not a panacea for 

inferencing on all kinds of data.

Since the world is moving more towards an active learning paradigm, one student model on an edge 

device will not suffice to accommodate all the variations in the attributes. So, we proposed a multi-student 

Architecture augmented with a highly compressed model selector network which can understand the 

attributes of an input data and route it to the corresponding student model which can give better results by 

utilising least amount of computing resources.

To prove our hypothesis we have shown the benefits of this approach on CIFAR-10 Dataset by carrying out 

extensive empirical study. The results reveal that, the proposed Multi-context Aware architecture perform 

better than independent student models. 

The observed results demand a pressing need for understanding the nuances of context aware meta 

architectures which can be deployed in 5G Edge computing scenarios, as we believe this can succeed as a 

general and a practical approach


