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Context 
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Million connected devices with higher demands in bandwidth

§ New services are becoming a reality
§ Higher Bandwidth
§ High availability for high number of users

§ Wi-Fi will remain an important 
technology to support such services
§ Wi-Fi hotspots will fourfold increase by 
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1. Cisco annual internet report (2018–2023) white
paper. Available on: http://www.cisco.com/go/vni

http://www.cisco.com/go/vni


Channel Bonding 

§ Introduced in 802.11n2 (2009). 
§ Two adjacent channels are bonded.

§ Recent versions (802.11ac/ax) 
allow more channels to be bonded. 
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Provide a higher channel capacity
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2. IEEE, “Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) 
Specifications Amendment 5 : Enhancements for Higher Throughput”, Standard, 2009.



Channel Bonding Problems
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OBSS interactions § Stochastics interactions 
based on the CSMA 
algorithm. 

§ Transmission over the 
full/sub set of channels.

§ High data rate = high 
packet error.

§ Inter STA – Inter 
WLAN interference. 

§ Hidden or exposed 
nodes. 

§ Starvation.
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Previous Solutions

§ Analytical models3

§ Markov Chains4

§ Simulations
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§ Assumptions that do not 
hold. 

§ Complexity increases
with the number of 
devices. 

§ Machine Learning / Artificial 
Intelligence5

§ Reinforcement Learning to 
select CB Policy6

3. L. Deek et al, “Intelligent channel bonding in 802.11n wlans,” IEEE Transactions on Mobile
Computing, vol. 13, no. 6, pp. 1242–1255, 2013
4. S. Barrachina-Muñoz, F. Wilhelmi, and B. Bellalta, “Dynamic channel bonding in spatially distributed
high-density wlans,” IEEE Transactions on Mobile Computing, vol. 19, no. 4, pp. 821–835, 2019.
5. ITU-T Y.3170-series - Machine learning in future networks including IMT-2020: use cases,” ITU-T,
Specification, 2019. [Online]. Available: https://www.itu.int/rec/T-REC-Y.Sup55-201910-I/en4
6. Y. Luo and K.-W. Chin, “Learning to bond in dense wlans with random traffic demands,” IEEE
Transactions on Vehicular Technology, vol. 69, no. 10, pp. 11 868–11 879, 2020.

https://www.itu.int/rec/T-REC-Y.Sup55-201910-I/en4


Proposed Solution: Graph Neural Networks – GNN7
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DL do not exploit graph-like structured data

§ A graph is 2-tuple G=(V, E) where V 
are the nodes and E are the links. 

§ Each node has its own set of 
features. 
§ Node type
§ SINR
§ Channels used
§ Airtime

§ Each link has its own set of features
§ Distance
§ RSSI
§ Interference

7. F. Scarselli, et al, “The graph neural network model,” IEEE Transactions on 
Neural Networks, vol. 20, no. 1, pp. 61–80, 2008.

Access Point (AP)

Station (STA)

AP-AP Link

AP-STA Link



Graph processing
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Follows a traditional multilayer approach of (Deep) Neural Networks
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Model - MetaNet
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Each layer is designed to find patterns in the graph-like structured data8

ReLUMetaLayer Fully Connected (Dense) Layer
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8. P. W. Battaglia et al., “Relational inductive biases, deep learning, 
and graph networks,”, arXiv preprint arXiv:1806.01261, 2018



Training Dataset 

§ Two scenarios with modifications on 
user density per m2

§ 3 map sizes per scenario.
§ 100 deployments per scenario.
§ Each scenario introduce more 

interference than the other.
§ Different channel configurations.
§ 80% Training – 480 Graphs.
§ 20%Validation – 120 Graphs.
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Characteristics
Scenario 1: 12APs 10-20 STAs

Scenario 2: 8APs 5-10 STAs
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Test Dataset

§ Four testing scenarios.
§ Different spatial distribution than 

training. 
§ 50 random deployments per scenario. 
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Characteristics
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Results

§ Training
§ Masked Loss

§ Training loss is designed to learn the STAs’
throughput.

§ Throughput AP is computed from predicted STAs 
throughput.

§ Adam optimizer
§ 10000 epochs
§ 3h of training time.
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Training

Metric Loss Value

Train loss (RMSE) 2.057

Validation loss 
(RMSE)

2.652

Masked Loss 
(score)

4.197



Results

§ Model is overfitting. 
§ Novel architecture for this type of 

problem.
§ The more similar the test scenario to

train scenario, the better the prediction.
§ The amount of data needed to train is 

big. 

§ Techniques to avoid overfitting
§ Perform data augmentation.
§ Add regularizers, e.g., dropout. 
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Testing

Scenario RMSE*

1 26.97

2 18.94

3 12.76

4 8.73
*Over all devices



Improvements

§ Change MetaLayers by Graph 
Convolutional Layers.

§ Implemented a Feed Forward model 
and a Convolutional model as 
baseline. 

§ Next Publication.
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Scenario GCN FNN CNN

1 9.384 16.250 16.403

2 8.247 15.562 15.456

3 6.822 11.774 11.485

4 6.481 12.025 11.565
*RMSE over all devices
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