nnec

A Graph Convolutional Neural Network approach for throughput prediction in next-generation WLANs

ITU-ML5G-PS-013: Improving the capacity of IEEE 802.11 WLANs through Machine Learning

Team ATARI: Paola Soto^{1,2}, David Góez^{2,} Natalia Gaviria², Miguel Camelo¹

I University of Antwerp - imec, IDLab, Department of Mathematics and Computer Science, Antwerp, Belgium 2 Universidad de Antioquia, Department of Telecommunications Engineering, Medellín, Colombia Email: paola.soto-arenas@uantwerpen.be

IDLAB, IMEC RESEARCH GROUP AT GHENT UNIVERSITY AND ANTWERP UNIVERSITY - PUBLIC

Context

Million connected devices with higher demands in bandwidth

Universiteit

Antwerpen

UNIVERSIDAD

DE ANTIOOUIA

Î

GENT

UNIVERSITEIT

IDLab

່ເຫາຍດ

- New services are becoming a reality
 - Higher Bandwidth
 - High availability for high number of users
- Wi-Fi will remain an important technology to support such services
 - Wi-Fi hotspots will fourfold increase by 2023¹

Channel Bonding

Provide a higher channel capacity

- Introduced in 802.11n² (2009).
- Two adjacent channels are bonded.
 - Recent versions (802.1 lac/ax) allow more channels to be bonded.

Channel Bonding Problems

OBSS interactions

- Stochastics interactions based on the CSMA algorithm.
- Transmission over the full/sub set of channels.
- High data rate = high packet error.
- Inter STA Inter
 WLAN interference.
- Hidden or exposed nodes.
- Starvation.

STA₂

Previous Solutions

- Analytical models³
- Markov Chains⁴
- Simulations

 Complexity increases with the number of devices.

5

- Machine Learning / Artificial Intelligence⁵
 - Reinforcement Learning to select CB Policy⁶

 L. Deek et al, "Intelligent channel bonding in 802.11n wlans," IEEE Transactions on Mobile Computing, vol. 13, no. 6, pp. 1242–1255, 2013
 S. Barrachina-Muñoz, F. Wilhelmi, and B. Bellalta, "Dynamic channel bonding in spatially distributed high-density wlans," IEEE Transactions on Mobile Computing, vol. 19, no. 4, pp. 821–835, 2019.
 ITU-T Y.3170-series - Machine learning in future networks including IMT-2020: use cases," ITU-T, Specification, 2019. [Online]. Available: <u>https://www.itu.int/rec/T-REC-Y.Sup55-201910-l/en4</u>
 Y. Luo and K.-W. Chin, "Learning to bond in dense wlans with random traffic demands," IEEE Transactions on Vehicular Technology, vol. 69, no. 10, pp. 11 868–11 879, 2020.

Proposed Solution: Graph Neural Networks – GNN⁷

UNIVERSIDAD

DE ANTIOOUIA

DL do not exploit graph-like structured data

- A graph is 2-tuple G=(V, E) where V are the nodes and E are the links.
- Each node has its own set of features.
 - Node type
 - SINR
 - Channels used
 - Airtime
- Each link has its own set of features

Universiteit

Antwerpen

- Distance
- RSSI

DLab

່ເກາຍດ

Interference

 $\widehat{\blacksquare}$

GENT

UNIVERSITEIT

Graph processing

Follows a traditional multilayer approach of (Deep) Neural Networks

Model - MetaNet

Each layer is designed to find patterns in the graph-like structured data⁸

Training Dataset

Characteristics

- Two scenarios with modifications on user density per m²
- 3 map sizes per scenario.
- 100 deployments per scenario.
- Each scenario introduce more interference than the other.
- Different channel configurations.
- 80% Training 480 Graphs.
- 20% Validation 120 Graphs.

Scenario I: 12APs 10-20 STAs

Test Dataset Characteristics

- Four testing scenarios.
- Different spatial distribution than training.
- 50 random deployments per scenario.

Results

Training

- Training
 - Masked Loss
 - Training loss is designed to learn the STAs' throughput.
 - Throughput AP is computed from predicted STAs throughput.
 - Adam optimizer
 - I0000 epochs
 - 3h of training time.

Metric	Loss Value
Train loss (RMSE)	2.057
Validation loss (RMSE)	2.652
Masked Loss (score)	4.197

Results

Testing

- Model is overfitting.
 - Novel architecture for this type of problem.
 - The more similar the test scenario to train scenario, the better the prediction.
 - The amount of data needed to train is big.
- Techniques to avoid overfitting
 - Perform data augmentation.
 - Add regularizers, e.g., dropout.

Scenario	RMSE*
I	26.97
2	18.94
3	12.76
4	8.73

*Over all devices

Improvements

- Change MetaLayers by Graph Convolutional Layers.
- Implemented a Feed Forward model and a Convolutional model as baseline.
- Next Publication.

Scenario	GCN	FNN	CNN
I	9.384	16.250	16.403
2	8.247	15.562	15.456
3	6.822	11.774	11.485
4	6.481	12.025	11.565

*RMSE over all devices

embracing a better life

