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Context
Million connected devices with higher demands in bandwidth

New services are becoming a reality
= Higher Bandwidth
= High availability for high number of users

Wi-Fi will remain an important
technology to support such services

=  Wi-Fi hotspots will fourfold increase by
2023!
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Channel Bonding

Provide a higher channel capacity

= Introduced in 802.1 In2 (2009).

= Two adjacent channels are bonded.

= Recent versions (802.1 lac/ax)

allow more channels to be bonded.
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Channel Bonding Problems

OBSS interactions

L.

Stochastics interactions
based on the CSMA
=\ algorithm.
STA; = Transmission over the
. 1 Y full/sub set of channels.
AN === =T = High data rate = high
ST % D pagket error. ;
- AP, | AP, = Inter STA — Inter
L ? D WLAN interference.
STA, D 2 STA, = Hidden or exposed
vy nodes.
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Previous Solutions

= Analytical models?
= Markov Chains* = Machine Learning / Artificial
= Simulations Intelligence>

= Reinforcement Learning to
select CB Policy®

= Assumptions that do not
hold.

= Complexity increases
with the number of

. 3. L. Deek et al, “Intelligent channel bonding in 802.11n wilans,” |IEEE Transactions on Mobile
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Proposed Solution: Graph Neural Networks — GNN/

DL do not exploit graph-like structured data

= A graph is 2-tuple G=(V, E) whereV
are the nodes and E are the links.

= Each node has its own set of
features.

Node type

SINR

Channels used
= Airtime

= Each link has its own set of features
= Distance
= RSSI

= |nterference
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7. F. Scarselli, et al, “The graph neural network model,” IEEE Transactions on
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Graph processing
Follows a traditional multilayer approach of (Deep) Neural Networks

hidden hidden
4 . ) 4 . )
input 0. 0.
4 ) 3 .
0 .= .:
‘\ ‘~\.|,, ‘~\.',,
.~~~~~ ‘-.‘ e \\\\ N
9
: —> —>
1
[ "o ; |
\_ J o i

_

_ m 7732 UNIVERSIDAD
tmec IDLab - gwar -y S0 DEANTIOQUIA




Model - MetaNet

Each layer is designed to find patterns in the graph-like structured data®

In_Channels = dim(node_features), dim(edge_features), hidden_dim = 128, Out_Channels=1

Edge Model Node Model

Graph per deplo
Throughput per ST

| MetalLayer ___ Fully Connected (Dense) Layer RelLU
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Training Dataset

Characteristics
Scenario |: 12APs 10-20 STAs

Scenario 2: 8APs 5-10 STAs

= Two scenarios with modifications on
user density per m?

60/50/40 m
40/30/20 m

. . 60/50/40
= 3 map sizes per scenario. K

= |00 deployments per scenario. 80/70/60 m

= Each scenario introduce more
interference than the other.

= Different channel configurations.
= 80% Training — 480 Graphs.
= 20% Validation — 120 Graphs.
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Test Dataset

Characteristics Scenario |: 4APs

o
0

Scenario 2: 6APs

o

Scenario 3: 8APs

o

Scenario 4: |0APs

" Four testing scenarios.
= Different spatial distribution than
training.

= 50 random deployments per scenario.
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Results
Training

=  Training
* Masked Loss
= Training loss is designed to learn the STAs’
throughput.
= Throughput AP is computed from predicted STAs
throughput.
u

Adam optimizer
10000 epochs

3h of training time.

e Lo

Train loss (RMSE)

2.057
Validation loss 2.652
(RMSE)
Masked Loss 4.197
(score)
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score, train_loss, valid_loss
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— valid_loss
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Results
Testing

= Model is overfitting.

* Novel architecture for this type of
problem.

= The more similar the test scenario to

train scenario, the better the prediction.

* The amount of data needed to train is
big.
= Techniques to avoid overfitting
* Perform data augmentation.

* Add regularizers, e.g., dropout.
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Prediction error [Mbps]

I 26.97

2 18.94
3 12.76
4 8.73

*Qver all devices



Improvements

= Change Metalayers by Graph m-m-

Convolutional Layers.

9.384 16.250 16.403

= Implemented a Feed Forward model ) 8.247 15.562 15.456

and a Convolutional model as 3 6.822 [1.774 |1 485
baseline. | | |

4 6.481 12.025 I1.565

= Next Publication.

*RMSE over all devices
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