

Scaling DNN Inference for Extreme Throughput

Michaela Blott Distinguished Engineer, Xilinx Research Dec 2020

Background

Xilinx

- Fabless semiconductor company, founded in Silicon Valley in 1984
- Today: ~4000 employees, \$2.8B revenue
- Invented the FPGA

Xilinx Research - Dublin

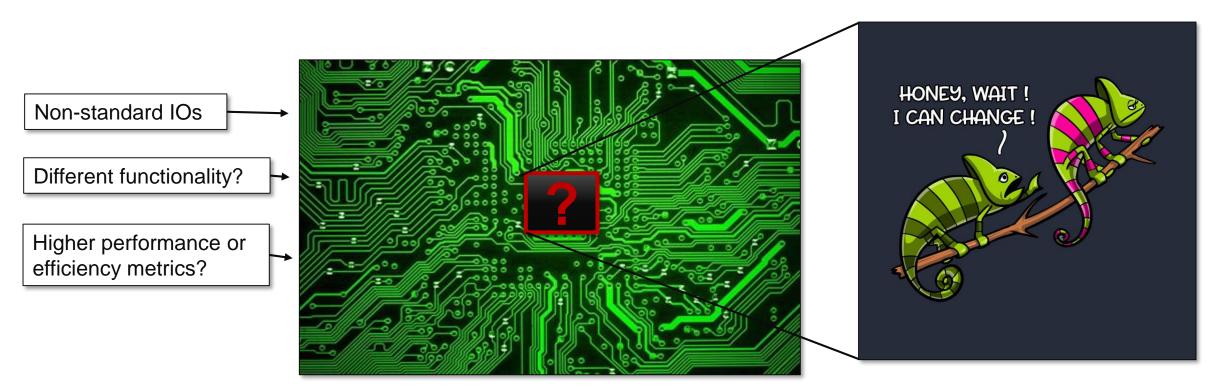
- Established almost 15 years ago
 - ~10 researchers plus university program
 - Highly active internship program, 80+ interns over the last 10years
- Focus: FPGAs in Machine Learning
 - Building systems, architectural exploration, algorithmic optimizations, benchmarking
 - Quantifying the value of our devices in this space
- In collaboration with partners, customers and universities

What are FPGAs?

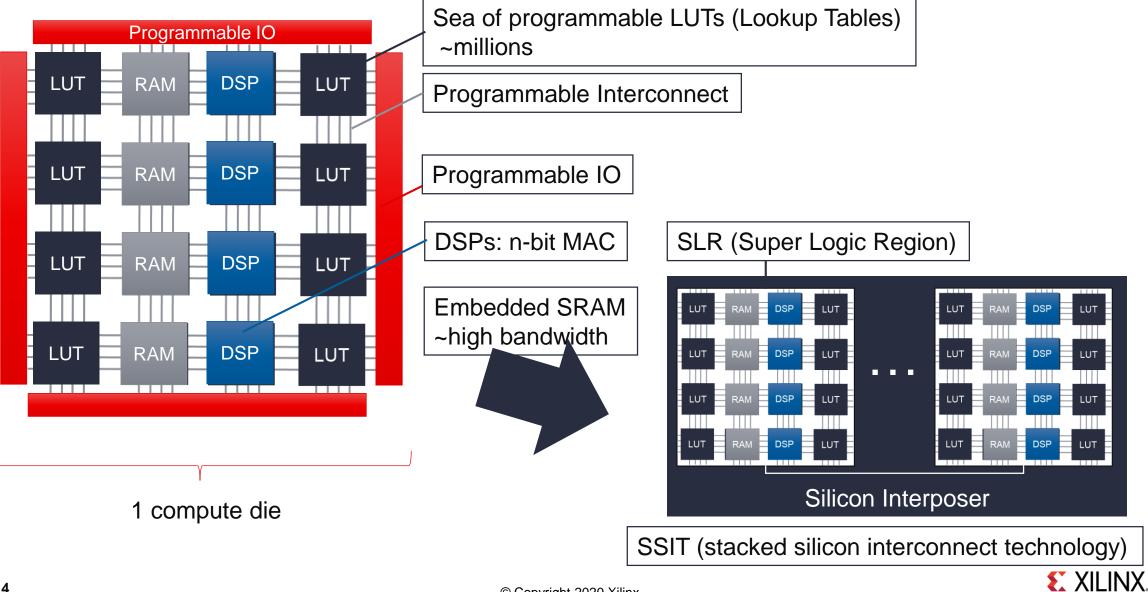
Customizable, Programmable Hardware Architectures

• The chameleon amongst the semiconductors...

- Customizes IO interfaces, compute architectures, memory subsystems to meet the application
- Use case: Nothing else works, and you want to avoid ASIC implementation; or ASIC emulation



What are FPGAs?



Challenges in Deploying DNNs in Communications

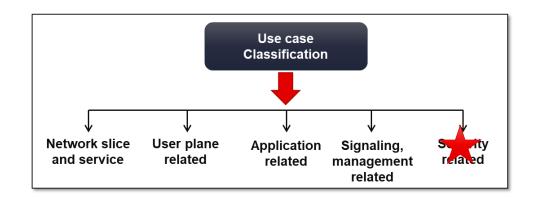
DNNs in Communications

- Many emerging use cases
 - Traffic classification
 - Traffic monitoring and statistics
 - Traffic prediction
 - Network intrusion detection ★

- Physical layers
- Implementation of individual basic components
 - Hashing/ indexing
 - Sorting

6

- ITU has identified and classified 30 use cases
 - ITU-T Y.3170-series Supp 55



- [1] https://www.cl.cam.ac.uk/~ey204/teaching/ACS/R244_2018_2019/papers/Kraska_SIGMOD_2018.pdf
- [2] http://learningsys.org/sosp19/assets/papers/22 CameraReadySubmission Abstract SOSP 19 ML_Sys_workshop-4.pdf

- [3] https://aip.scitation.org/doi/full/10.1063/1.5140609
- 4 https://hal.archives-ouvertes.fr/tel-01206266/document
- 5 https://tel.archives-ouvertes.fr/tel-01876701/document
- [6] https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8054694

Specific Challenges for DNNs in Communication: Throughput

- Extreme high throughput requirements
- Highest reported inference performance
 - 55kfps ResNet50 (423TOP/sec) MLPerf [1]
- Even a 1MOP/inference model would require
 - 600TOP/s for 400Gbps
 - 30TOP/s for 20Gbps

Throughput requirements are extremely high

- Beyond the limit of latest AI silicon
- Limiting complexity of DNNs

	Throughput
5G (20Gbps)	30MRps
100Gbps	150MRps
400Gbps	600MRps

MRps: Million Requests per Second Assuming 64B / packet

Datasheet performance of State of the Art AI accelerators:

	Performance	
Ascend 910	256TOP/s *	
Colossus (Graphcore)	250TOP/s *	
A100 (Nvidia)	312TOP/s *	
	1248TOP/s **	
	*BF/FP16	
	**INT8	

Specific Challenges for DNNs in Communication: Latency

- Ultra low latency requirements in any form of cognition cycle:
 - Translates to buffering requirements

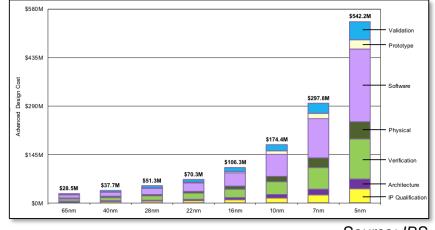


	Buffer [10ns]	Buffer [1us]	Buffer [1msec]
5G (20Gbps)	0.2Kb	20Kb	20Mb
100Gbps	1Kb	100Kb	100Mb
400Gbps	4Kb	400Kb	400Mb

- Typical latency in MLPerf
 - Closed data center, single stream latency: 2-7msec [1]

Challenges in the Semiconductor Landscape

- Manufacturing difficulties of shrinking transistor sizes beyond 5nm
 - FINFET doesn't scale to 3nm
- Design costs are exploding



Source: IBS

 Limited performance & power benefits with smaller technology nodes

Hitting the physical limits of silicon-based computing

Moving away from standard van Neumann architectures

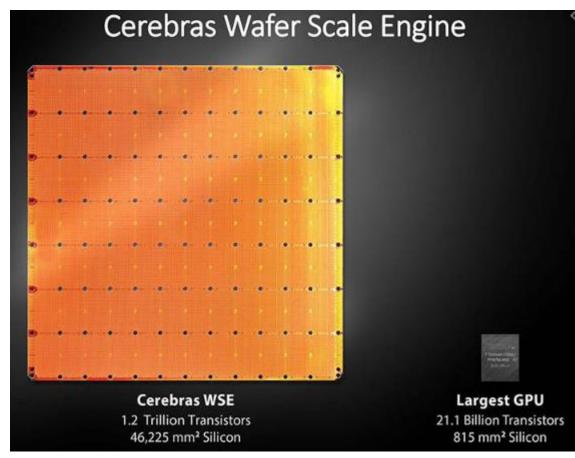
Architectural innovation becomes paramount

Innovation is needed to provide the necessary performance scalability

Innovative Approaches – Going Wide

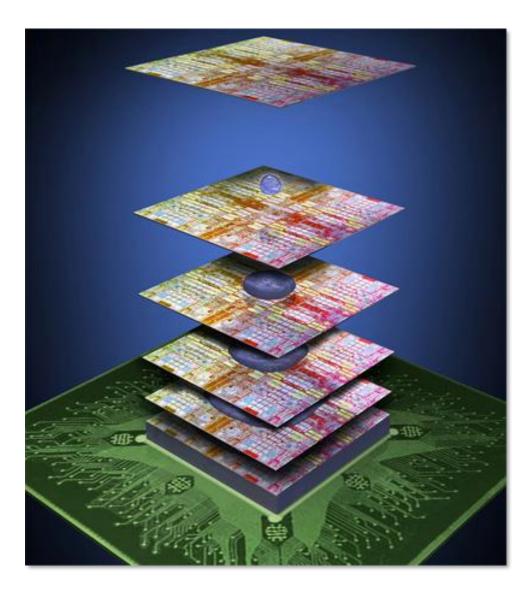
Cerebras: Waver-Scale Computing

- Targeting ML training



Source: HotChips2019

Innovative Approaches – Going High with 3D Die Stacking



Innovative Approaches – Quantum Computing

- Dwave: Quantum Computing
 - For HPC and ML applications

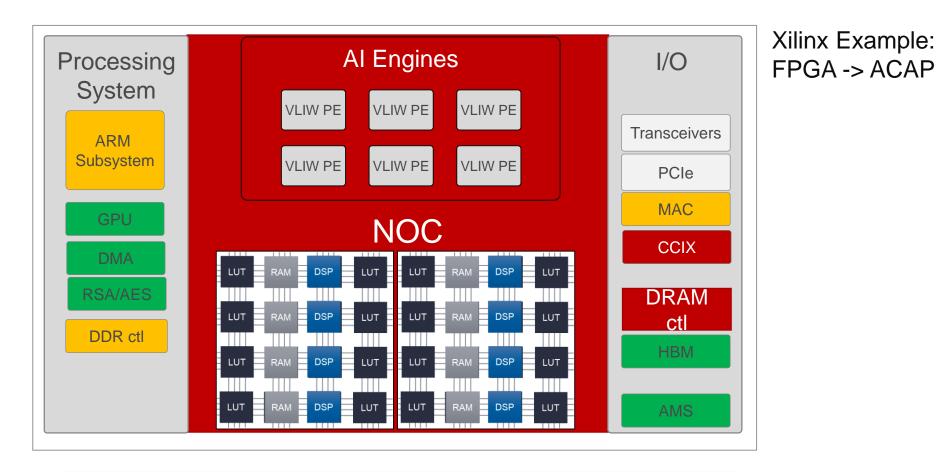


Innovative Approaches – Analog Neuromorphic Computing

Performance Scalability through Specialization

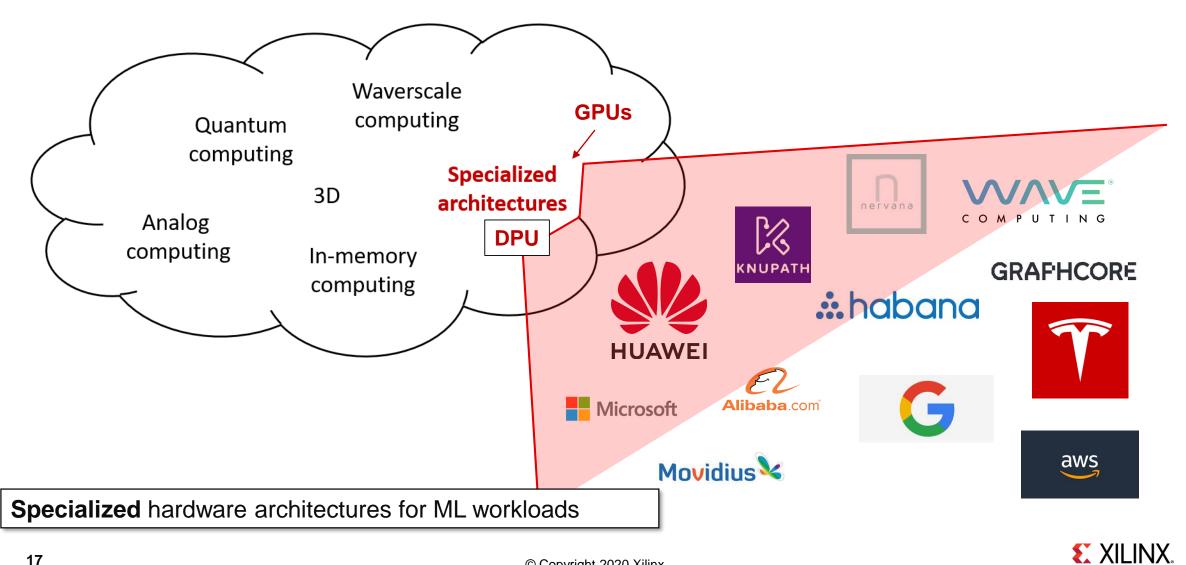
Specialization for Performance Scalability

5 Series 7 Series U+ Series Versal

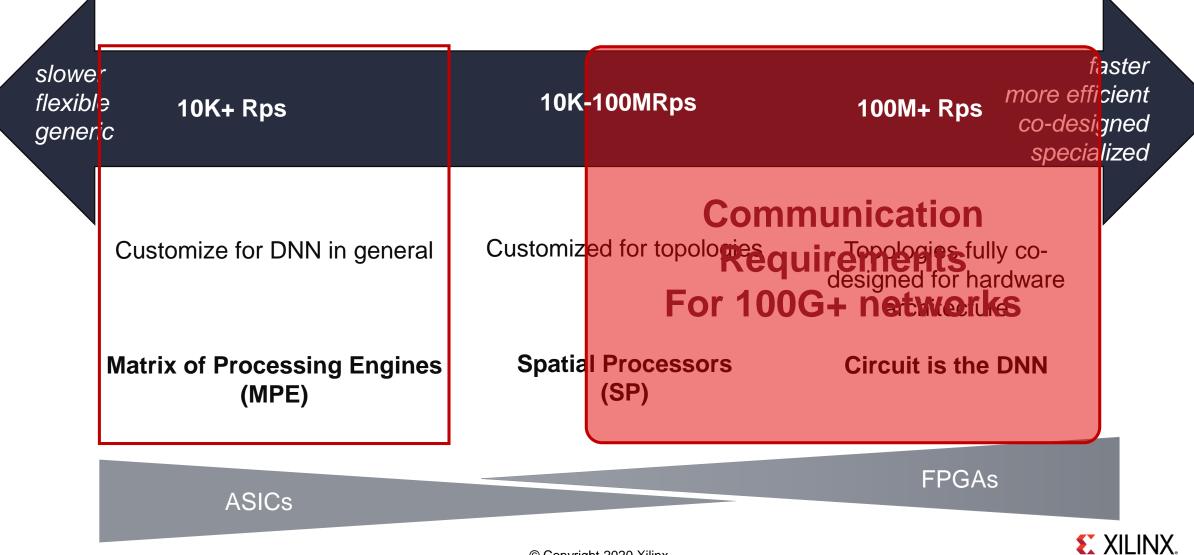


More hardened specialized functionality to improve compute density and save power

Innovative Approaches

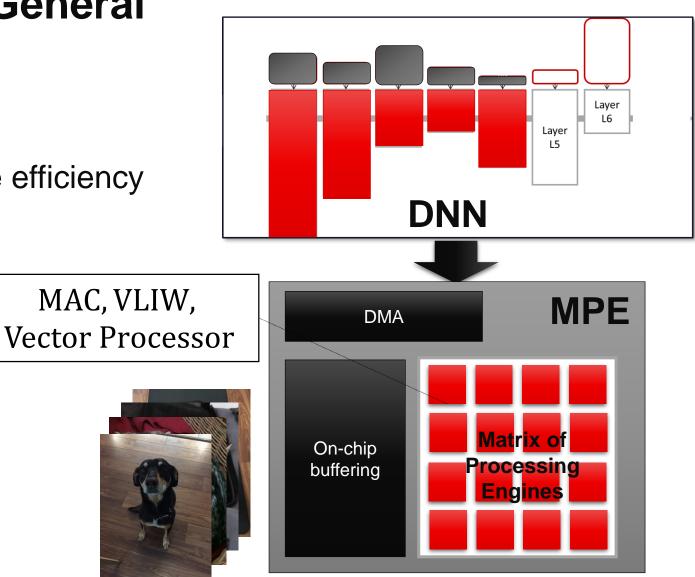


DPU Compute Architecture Specialization, Performance & Flexibility

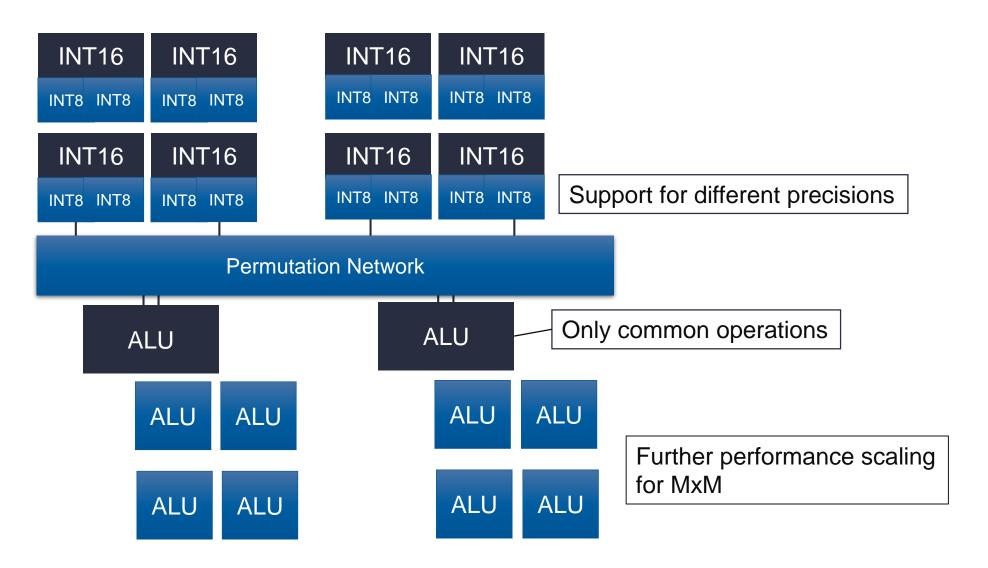


Matrix of Processing Engines Customizing for DNN in General

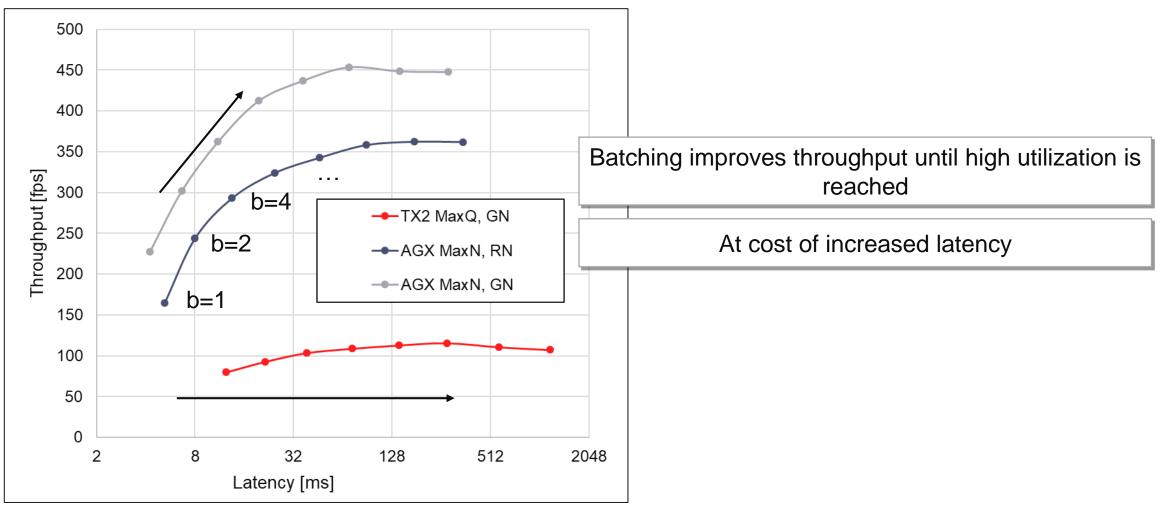
- Popular layer-by-layer compute
- Batching to achieve high compute efficiency
- Specialized processing engines
 - Operators
 - ALU types
 - tensor-, matrix- or vector-based



MPE: Specialization of Processing Engines

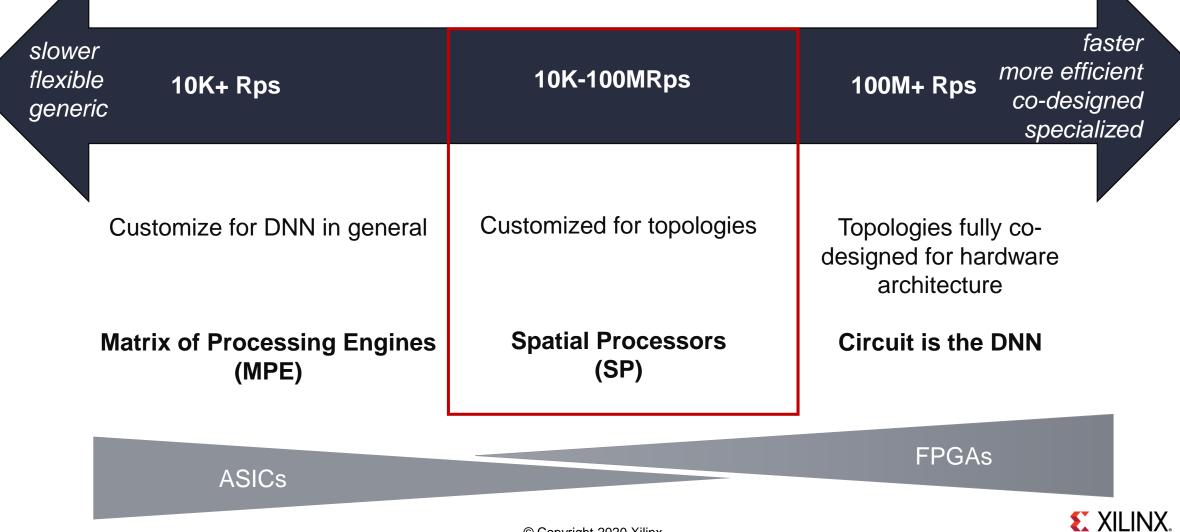


MPE: Latency Implications of Batching



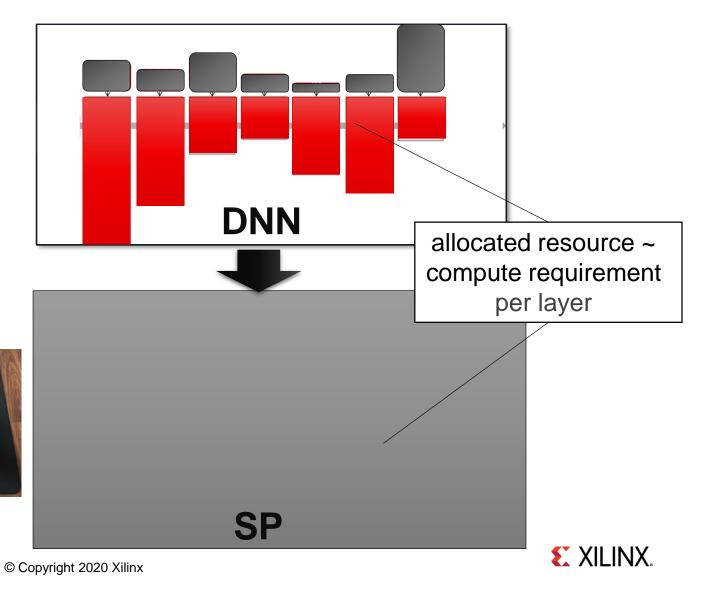
Embedded measurement of system-level latency, FP16 https://rcl-lab.github.io/QutibenchWeb/

DPU Compute Architecture Specialization, Performance & Flexibility



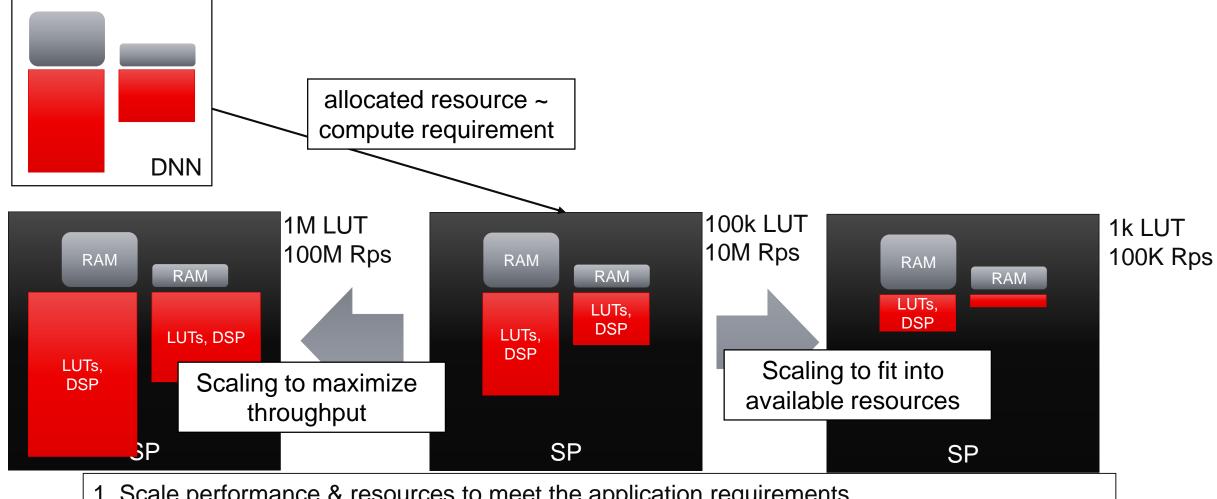
Spatial Processors: Customizing for Specific Topologies

- Hardware architecture mimics the topology
- Customize everything to the specifics of the DNN
- Benefits:
 - Improved efficiency
 - Low fixed latency
 - Higher throughput
- FPGAs rather than ASICs



23

Spatial Architectures: Scaling to Meet Performance & Resource Requirements



1. Scale performance & resources to meet the application requirements

2. If resources allow, we can completely unfold to create a circuit that inferences at clock speed (communications!)

_INX.

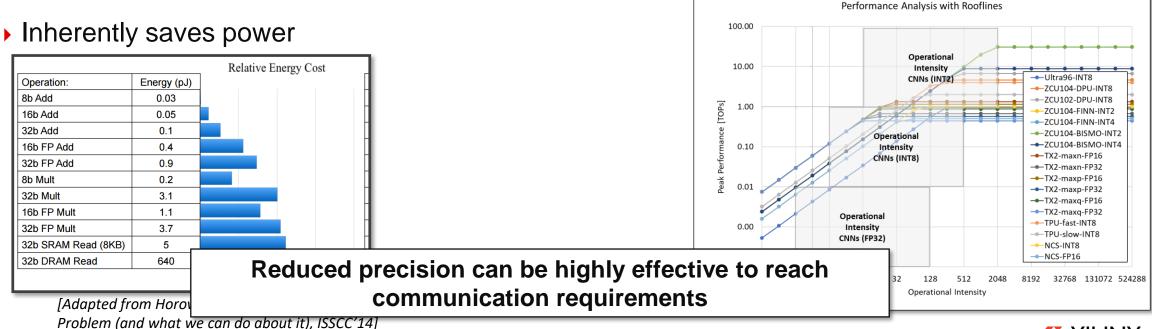
Customizing Arithmetic

Customizing Arithmetic to Minimum Precision Required

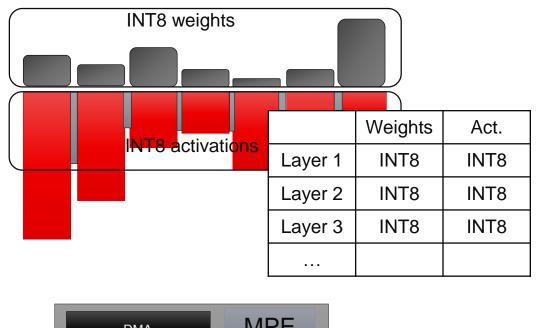
- Shrinks hardware cost & scales performance
 - Instantiate ~100x more compute within the same fabric, thereby scale performance 100x
- Reduces memory footprint
 - NN model can stay on-chip => no memory bottlenecks

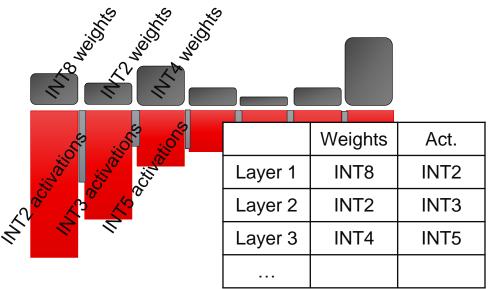


C= size of accumulator * size of weight * size of activation



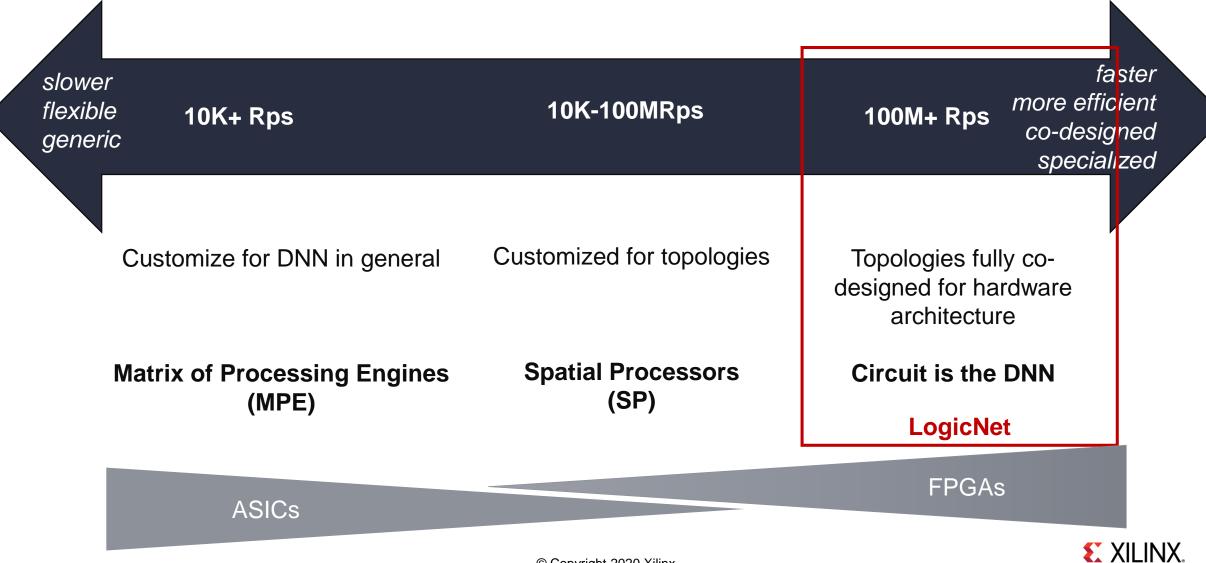
Granularity of Customizing Arithmetic



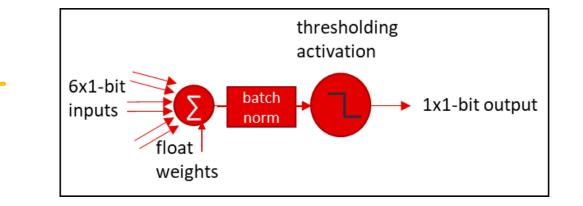


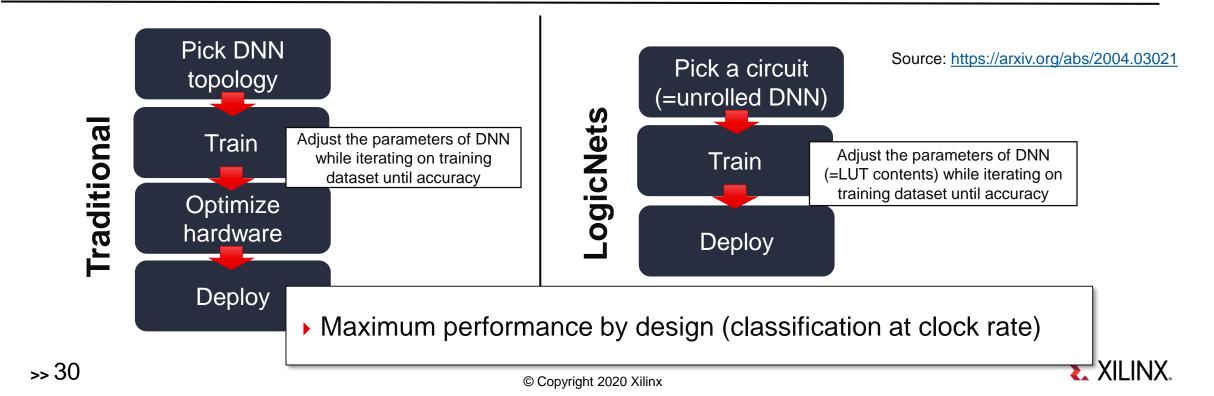
Extreme Specialization

DPU Compute Architecture Specialization, Performance & Flexibility



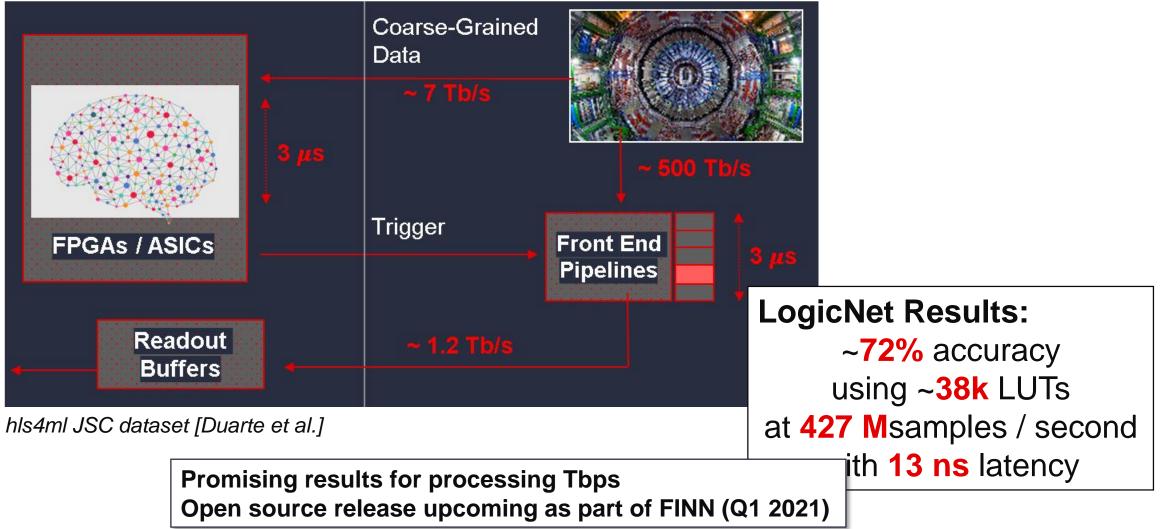
LogicNets with FPGAs





LogicNets Results

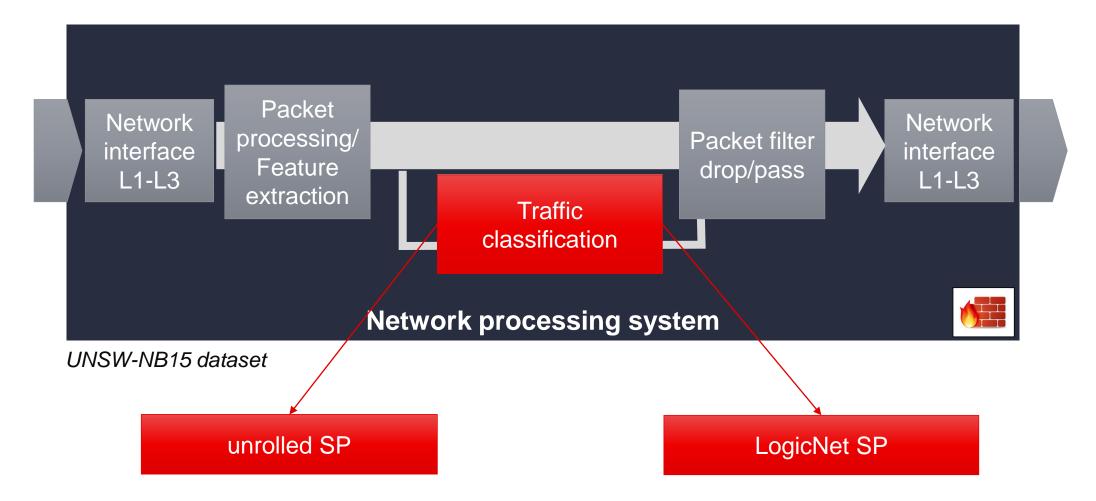
Jet Tagging (CERN LHC)



31

Scaling to Extreme Throughput in Network Intrusion Detection

Deep Network Intrusion Detection System



Results

	DNN	Unrolled SP	LogicNet SP	If we can change	
	topology	MLP	Circuit is the topology	the topology	
	#layers	3	4		
	neurons / layer	64	10s - 100s		
	#bits / weight & activation	2b	2b		
	#bits / inputs & output	binary	binary		
	Inputs / neuron	64	7	Sparsity to suit to fabric	
	accuracy	91.9%	91.3%	lo tablic	
100Gbps throu	Optimization ghput	spatially unrolled, customized arithmetic	Learned circuit	400Gbps throughput	
requirements a	re met Throughput	Expected* 208MRps	471MRps	requirements are met	
Extreme low la	Latency	1.2usec	9nsec		
	Clock	208MHz	471MHz	High clock rate	
low clock	ock UNSW-NB15 Network Intrusion Detection				
	Spatial processing, cu scale to communciation		and learned circuits can ency requirements	help	

Challenge

How can we enable a broader spectrum of end-users to be able to specialize hardware architectures and co-design solutions?

Providing tools and platforms for exploration of DNN compute architectures

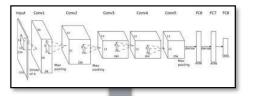
End-to-end flow

- ML engineers can create specialized hardware architectures on an FPGA
 - with spatial architectures and custom precision

• Open source

- Transparency and flexibility for the fast changing landscape of algorithms
 - if not supported, you can add your own

From DNN to FPGA Deployment



Brevitas Training in pytorch Algorithmic optimizations

FINN compiler Specializations of hardware architecture

> Deployment with PYNQ

AVNET

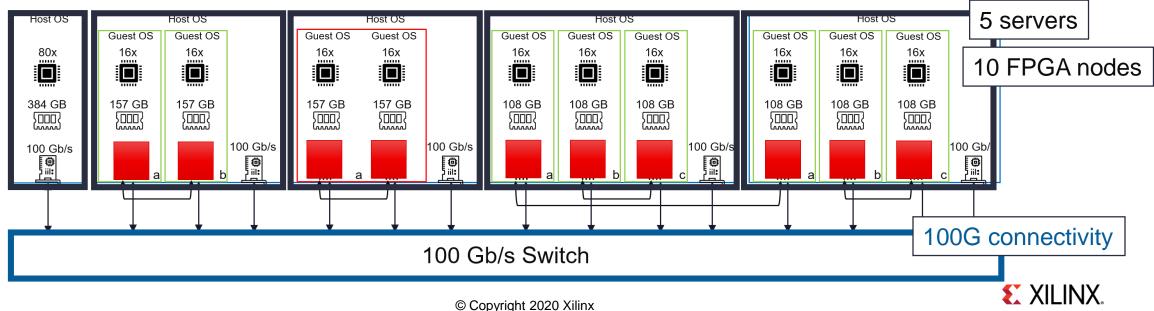
- Train or even learn reduced precision DNNs
- Library of standard layers
- Pretrained examples

ONNX Intermediate Representation

- Perform optimizations
- Map to Vivado HLS
- Create DNN hardware IP
- Embeds the DNN IP into an infrastructure design
- Generates Python run-time (based on PYNQ)
- Enables integration with your application
- Works on embedded and Alveo platforms

Infrastructure for Experimentation

- Xilinx academic compute clusters
 - 4 centres world-wide
 - Free to use
 - Enabling research community
- Not only for FINN

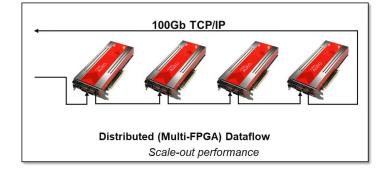


38

FINN Status

- Ongoing development
 - Support for residual topologies, depthwise convolutions
 - LogicNet
 - Multinode deployment on XACC
- Looking to build-up a community
 - Many student, hobbyist, and school projects
 - University classes with FINN @ Stanford, Charlotte, NTNU
 - Online material in preparation
 - Industrial applications
- Looking to create differentiating application portfolio
 - Extreme throughput (100M+ fps) ultra-low latency

If you're interested, we'd love to hear from you ③



Summary

Summary – Future Work

- Specialization in hardware architectures is key to scaling performance to meet requirements of DNNs in communications
- With more flexibility, more opportunity to customization
 - FPGAs allow to specialize to the specifics of individual use cases without loosing generality
- SPs with customized arithmetic and LogicNets are shown to meet 100Gbps 400Gbps requirements in NIDS (as well as high energy physics)
- Tools such as FINN are needed to overcome complexity in the design entry and make technology accessible

Please be in touch, if you're interested in collaborating ③

XILINX.

Thank You

More information can be found at: https://xilinx.github.io/finn

