LEARNING TO DETECT:

ON SITE-SPECIFIC CHANNEL ESTIMATION WITH HYBRID MIMO ARCHITECTURES

Joan Palacios, Dolores Garcia, Joerg Widmer

IMDEA Networks & Universidad Carlos III de Madrid

Channel per frequency f:

 \mathbf{H}_{f}

Measurement m per frequency f:

 $\left\{y_{m,f}\right\}_{m,f} \to \left\{\mathbf{H}_{f}\right\}_{f}$

 $y_{m,f} = \mathbf{W}_m^{\mathrm{H}} \mathbf{H}_f \mathbf{F}_m + \mathbf{W}_m^{\mathrm{H}} n_{m,f} /$

Objective:

THE PROBLEM

Geometric channel

Channel contribution per path l and frequency f:

Channel per frequency as interaction of paths:

 $\mathbf{H}_f = \sum \mathbf{H}_f^{(l)}$

THE CHANNEL

Path properties:

- $heta_l'$ Angle of departure
- ϕ_l' Angle of arrival
- au_l Time of arrival
- α_l Complex gain

Steering vectors:

 $[\mathbf{a}_{\mathrm{RX}}(\phi_l)]_n = e^{-in\phi_l}$ $[\mathbf{a}_{\mathrm{TX}}(\theta_l)]_n = e^{-in\phi_l}$

 $\phi_l = \pi \sin \phi'_l$

 $\theta_l = \pi \sin \theta'_l$

Path l contribution for frequency f:

 $\mathbf{H}_{f}^{(l)} = \alpha_{l} \mathbf{a}_{\mathrm{RX}}(\phi_{l}') \mathbf{a}_{\mathrm{TX}}^{\mathrm{H}}(\theta_{l}') e^{-i2\pi f \tau_{l}}$

THE PATH

$$y_{m,f} = \mathbf{W}_m^{\mathrm{H}} \mathbf{H}_f \mathbf{F}_m + \mathbf{W}_m^{\mathrm{H}} n_{m,f}$$

$$\mathbf{H}_{f} = \sum_{l} \alpha_{l} \mathbf{a}_{\mathrm{RX}}(\phi_{l}') \mathbf{a}_{\mathrm{TX}}^{\mathrm{H}}(\theta_{l}') e^{-i2\pi f \tau_{l}}$$

FORMULATION

$\mathbf{M} = \Phi^{\mathrm{H}} \widehat{\mathbf{H}} + \mathbf{N}$

 $\widehat{\mathbf{H}} = \sum \alpha_l \mathbf{a}_{\mathrm{RX}-\mathrm{TX}}(\phi_l, \theta_l) \mathbf{a}_{\mathrm{F}}^{\mathrm{T}}(\tau_l)$

- **M** : Measurements
- Φ : Measurement matrix
- N : Noise

FORMULATION

Objective: $Y \rightarrow \underline{\widehat{H}}$

 $\min_{\widehat{\mathbf{H}}} || \mathbf{D}_{w} \mathbf{M} - \mathbf{D}_{w} \Phi^{H} \widehat{\mathbf{H}} ||_{F}$

Equivalent to Best Matching Projection Problem

Best projection problem

Solve by a custom Matching Pursuit algorithm

 $\max_{\phi,\theta,\tau} \left| \mathbf{a}_{\mathrm{RX-TX}}^{\mathrm{H}}(\phi,\theta) \Phi \mathbf{D}_{\mathrm{W}}^{\mathrm{H}} \mathbf{D}_{\mathrm{W}} \mathbf{M} \mathbf{a}_{\mathrm{F}}^{*}(\tau) \right|$

APPROACH

 \mathbf{D}_{w} : noise whitening matrix

Initialize $\mathbf{M} \to \mathbf{M}_r$ while path in \mathbf{M}_r detected: Extract new path components ϕ, θ, τ Compute all paths' α values by MMSE Subtract all estimated paths contributions to \mathbf{M} to update \mathbf{M}_r Use all paths components with all α to reconstruct $\hat{\mathbf{H}}$

> <u>Detection</u>: Null hypothesis testing <u>Extraction</u>: Cutting plane optimization

Null hypothesis: $\mathbf{M} = \mathbf{N}$ with confidence γ

 $\begin{aligned} \left| \mathbf{a}_{\text{RX}-\text{TX}}^{\text{H}}(\phi,\theta) \Phi \mathbf{D}_{\text{W}}^{\text{H}} \mathbf{D}_{\text{W}} \mathbf{M} \mathbf{a}_{\text{F}}^{*}(\tau) \right| &\sim Rayleigh(\sigma) \end{aligned} \\ & \max_{\phi,\theta,\tau} \left| \mathbf{a}_{\text{RX}-\text{TX}}^{\text{H}}(\phi,\theta) \Phi \mathbf{D}_{\text{W}}^{\text{H}} \mathbf{D}_{\text{W}} \mathbf{M} \mathbf{a}_{\text{F}}^{*}(\tau) \right| \text{ has a } \gamma \text{ percentile } \sigma \sqrt{-2\ln\left(1-\gamma^{\frac{1}{R}}\right)} \end{aligned}$

 $\frac{\max_{\phi,\theta,\tau} \left| \mathbf{a}_{\text{RX}-\text{TX}}^{\text{H}}(\phi,\theta) \Phi \mathbf{D}_{\text{W}}^{\text{H}} \mathbf{D}_{\text{W}} \mathbf{M} \mathbf{a}_{\text{F}}^{*}(\tau) \right|}{\operatorname{median}_{\phi,\theta,\tau} \left| \mathbf{a}_{\text{RX}-\text{TX}}^{\text{H}}(\phi,\theta) \Phi \mathbf{D}_{\text{W}}^{\text{H}} \mathbf{D}_{\text{W}} \mathbf{M} \mathbf{a}_{\text{F}}^{*}(\tau) \right|} < \sqrt{-\ln_{2} \left(1 - \gamma^{\frac{1}{R}}\right)}$

DETECTION

R : Number of ϕ, θ, τ combinations

 $\max_{\phi,\theta,\tau} \left| \mathbf{a}_{\text{RX}-\text{TX}}^{\text{H}}(\phi,\theta) \Phi \mathbf{D}_{\text{W}}^{\text{H}} \mathbf{D}_{\text{W}} \mathbf{M} \mathbf{a}_{\text{F}}^{*}(\tau) \right|$

Retrieve ϕ, θ, τ from the detection Sequentially estimate ϕ, θ Estimate τ Iterate: Sequentially estimate ϕ, θ Estimate τ

EXTRACTION

- All estimations are done by a welldesigned grid-search.
- When we sequentially estimate the angles, we prioritize the one in the device with the larger amount of antenna elements
- The estimation resolution for the detection is much lower than the desired one. Due to this, the first algorithm iteration is slightly different.

Solution is an iterative algorithm in which γ only matters for the detection

Error function respect to γ is a step function

Run the solution using a lower bound γ_{\min} and take note of the required γ for the threshold to be triggered and the resulting error Reconstruct the error step function Merge the error step functions of different runs Select γ minimizing the error

Null hypothesis condition

 $\gamma > \left(1 - 2 \left(\frac{\max_{\phi,\theta,\tau} |\mathbf{a}_{\mathsf{RX}-\mathsf{TX}}^{\mathsf{H}}(\phi,\theta) \Phi \mathbf{D}_{\mathsf{W}}^{\mathsf{H}} \mathbf{D}_{\mathsf{W}} \mathbf{M} \mathbf{a}_{\mathsf{F}}^{*}(\tau)|}{\max_{\phi,\theta,\tau} |\mathbf{a}_{\mathsf{RX}-\mathsf{TX}}^{\mathsf{H}}(\phi,\theta) \Phi \mathbf{D}_{\mathsf{W}}^{\mathsf{H}} \mathbf{D}_{\mathsf{W}} \mathbf{M} \mathbf{a}_{\mathsf{F}}^{*}(\tau)|}\right)^{2}\right)^{\mathsf{H}}$

Training set consisting of 50 samples out of the 10000 available. Training on an 8th gen Intel core i7 CPU, no GPU required.

Training is analytical instead of iterative, leading always to the optimal solution for γ .

TRAINING

Dataset 3

By having a proper analysis of the problem, we:

- Improve the model's accuracy
- Improve the model's robustness
- Reduce the model's complexity
- Improve the training method
- Increase the training accuracy
- Reduce the training time

CONCLUSIONS