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Challenge: Site-specific channel estimation with hybrid MIMO [AI5G]

[AI5G] https://research.ece.ncsu.edu/ai5gchallenge/
[RayMob] https://www.lasse.ufpa.br/raymobtime/

• Frequency selective hybrid millimeter wave MIMO-OFDM, K=256 subcarriers

• Raymobtime [RayMob] for collecting realistic datasets by ray-tracing with mobility

• Off-line training → 10,000 channels and 100 corresponding received pilots in frequency domain 
for SNR = -15 dB, -10 dB, and -5 dB  

• Testing → 9 collections of received pilots at different SNRs and pilot lengths
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System model [FPVH18]

[FPVH18] J. Rodríguez-Fernandez, N. González-Prelcic, K. Venugopal, and R. W. Heath, “Frequency-domain compressive channel estimation for 
frequency-selective hybrid millimeter wave MIMO systems,” IEEE Transactions on Wireless Communications, vol. 17, no. 5, pp. 2946–2960, 2018.

th delay tap of the channel

Diagonal matrix with complex path gains 
The millimeter wave channel is sparse:

• The number of non-zeros taps is 
much smaller than L!

• Each non-zero tap only contains 
beams from a small number of 
angles!

Extended virtual channel model:

Sparse matrix with path gains of the quantized spatial frequencies

Frequency-domain channel at subcarrier 

Same non-zero indices for the sparse matrices 
We will exploit this in our proposed sparse 
Bayesian learning method to improve the 
channel estimation at low SNRs for the sparse 
channels in the considered site.
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System model [FPVH18]

[FPVH18] J. Rodríguez-Fernandez, N. González-Prelcic, K. Venugopal, and R. W. Heath, “Frequency-domain compressive channel estimation for 
frequency-selective hybrid millimeter wave MIMO systems,” IEEE Transactions on Wireless Communications, vol. 17, no. 5, pp. 2946–2960, 2018.

Concatenated received signals during         training intervals 

Dictionary matrix: 
• known, 
• fixed grid, BUT 
• different spatial frequencies during off-line 

training and testing in the proposed method

Sparse vector

Transmit 
precoder

Receive 
combiner

Pilot 
signal

Colored noise, the correlation matrix of                         :
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Proposed Framework:
Conversion of the received signal to time-domain and whitening

First Step: Apply inverse DFT to the frequency-domain received signals and scale them:

Due to sparse channel, most of 
the time-domain received signals 
contain only noise! 

Second Step: Keep only a subset of 
delay taps that dominate the power of 
the received signal:

By applying a simple thresholding on the 
total energy of the signals

Third Step: Whiten the time-domain signals:
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Proposed pattern-coupled hierarchical model 

[FZL16] J. Fang, L. Zhang, and H. Li, “Two-dimensional pattern-coupled sparse Bayesian learning via generalized approximate message 
passing,” IEEE Transactions on Image Processing, vol. 25, no. 6, pp. 2920–2930, 2016.

• We extend the pattern-coupled sparse Bayesian learning in [FZL16] for our problem by 

 Introducing sparsity connections between consecutive AoAs and AoDs

 Modeling the hyper-parameters to exploit the common sparsity

• Noisy measurements:

i.i.d. Gaussian noise with zero-mean and 
unknown noise variance

Sparse unknown vectors
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Proposed pattern-coupled hierarchical model 

[FZL16] J. Fang, L. Zhang, and H. Li, “Two-dimensional pattern-coupled sparse Bayesian learning via generalized approximate message 
passing,” IEEE Transactions on Image Processing, vol. 25, no. 6, pp. 2920–2930, 2016.

• We exploit the block-sparse structure along AoAs, AoDs, 
and the common sparsity for all the delay taps, we define 
the prior

• Pattern-coupling:

Hyperparameters controlling the sparsity

Pattern relevance parameters



• Introduce the inverse of noise variance as another hyperparameter:

• Utilize EM algorithm for learning the sparse signal        and the hyperparameters

• Treat the sparse signal as hidden variable and maximize a lower bound on the posterior 
probability                    (called Q-function)

• Alternate between E-step and M-step.
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Expectation maximization (EM) algorithm for the proposed sparse Bayesian 
learning method

E-Step: Compute the posterior distribution of the 
sparse signal conditioned on the observed data and the 
hyperparameters

Multivariate Gaussian distribution →
compute the mean and covariance matrix 
in closed-form!

M-Step: Estimate the hyperparameters by maximizing 
the Q-function

Only one suboptimal update, all 
closed-form simple updates!



Apply the same EM maximization algorithm by arranging the system model such that the 
observed variables are true channels that are available from the off-line training data   
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Learning the joint relations between AoAs and AoDs

• Use the uniform grid on               with                             and                              

• We add a small-variance noise (                      )  to obtain the original sparse model

• Obtain 10,000 sparse estimates                     and  estimate the power distribution along 
AoA and                       AoD points (interpolation by 2 along both AoA and AoDs)
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Learning the joint relations between AoAs and AoDs
 We propose a grid construction algorithm to adjust the grid points according to the power distribution.

 Start with a uniform grid with 96x24 points. 

 Assign additional 96x8 grid points to the most yellowish regions by sorting the power values accordingly.

 Move the points to the places where the power of the sparse vectors obtained from the training data is greater.

 At the same time, try to prevent the neighboring grid points from being far away by some tuning.
Power distribution of the sparse vectors Selected grid points for testing stage (yellow pixels)
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• 9 unknown data sets of received pilots obtained at SNRs ranging from -20 to 0 dB

• 1000 channels in each data set

• Normalized mean square error (NMSE) scores:

Evaluation: Test scores and final ranking

-8.94 dB -9.99 dB -10.31 dB

-10.82 dB -11.33 dB -11.89 dB

-11.74 dB -12.47 dB -12.98 dB

[-20 dB, -11 dB] [-11 dB, -6 dB] [-6 dB, 0 dB]

Pilot length: 20

Pilot length: 40

Pilot length: 80

Using weights 0.5, 0.3, and 0.2,
giving more weight to the more 
challenging settings (lower SNR and 
less training):

Final performance score (PS) is 
-9.48 dB
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Thank you!
ICARUS: Özlem Tuğfe Demir, Cenk M. Yetis, Emil Björnson, Pontus Giselsson 

E-mail: ozlem.tugfe.demir@liu.se

mailto:ozlem.tugfe.demir@liu.se
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