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Challenge: Site-specific channel estimation with hybrid MIMO [AI5G]
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* Frequency selective hybrid millimeter wave MIMO-OFDM, K=256 subcarriers

=
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 Raymobtime [RayMob] for collecting realistic datasets by ray-tracing with mobility

Off-line training - 10,000 channels and 100 corresponding received pilots in frequency domain
for SNR =-15 dB, -10 dB, and -5 dB

Testing - 9 collections of received pilots at different SNRs and pilot lengths

[AI5G] https://research.ece.ncsu.edu/ai5gchallenge/
[RayMob] https://www.lasse.ufpa.br/raymobtime/
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System model [FPVH18]
{'th delay tap of the channel - Hy = AR&EA%, { =0.....L—1

[ Ay € (CNray X Nray > Diagonal matrix with complex path gains ]

The millimeter wave channel is sparse:

> Extended virtual channel model: Hg I~ ARA}A%

* The number of non-zeros tapsis

much smaller than L! | . ETe.
A{ c CYr>%~t—Sparse matrix with path gains of the quantized spatial frequencies

Each non-zero tap only contain

[ )
L—1
Hk] ~ Ag [ Y Aje %) Al = AR AY[k]A%
=0 )

We will exploit this in our proposed sparse
Same non-zero indices for the sparse r@trice Bayesian learning method to improve the
AY [H fork=1.,....K > channel estimation at low SNRs for the sparse
channels in the considered site.

[FPVH18] J. Rodriguez-Fernandez, N. Gonzalez-Prelcic, K. Venugopal, and R. W. Heath, “Frequency-domain compressive channel estimation for
frequency-selective hybrid millimeter wave MIMO systems,” IEEE Transactions on Wireless Communications, vol. 17, no. 5, pp. 2946—2960, 2018.



System model [FPVH18]

Concatenated received signals during ﬂ[ training intervals

( \ Pilot || Transmit Rece'ive
_ y(l) [H - - (I)(l) - l’lgl) [H signal || precoder || combiner
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\ / Dictionary matrix:

1 L] — v '3 . Gt(—;’r‘—b S t L knOWn,
h*[k] = vec{A"[k]} € C PAIsEVERRL 1. fixed grid, BUT

Colored noise, the correlation matrix of nc[k} /J , ) different spatial freo!uencies during off-line
training and testing in the proposed method

tr

[FPVH18] J. Rodriguez-Fernandez, N. Gonzalez-Prelcic, K. Venugopal, and R. W. Heath, “Frequency-domain compressive channel estimation for
frequency-selective hybrid millimeter wave MIMO systems,” IEEE Transactions on Wireless Communications, vol. 17, no. 5, pp. 2946—2960, 2018.



Proposed Framework:

Conversion of the received signal to time-domain and whitening

| First Step: Apply inverse DFT to the frequency-domain received signals and scale themJ

Second Step: Keep only a subset of
delay taps that dominate the power of
the received signal:

4 | K—1 N
V[l =—= y[k]e &
(] \/f(kzg K] )
—dWh'[(| +n.[l], (€L

Due to sparse channel, most of
the time-domain received signals
contain only noise!

(By applying a simple thresholding on the\

L£Lc{0,...,K—-1}

total energy of the signals

5 y[(], for { =0,.... K —1

J

| Third Step: Whiten the time-domain signals: |
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Proposed pattern-coupled hierarchical model

* We extend the pattern-coupled sparse Bayesian learning in [FZL16] for our problem by
» Introducing sparsity connections between consecutive AoAs and AoDs

» Modeling the hyper-parameters to exploit the common sparsity

* Noisy measurements: y' = Ax' +w’, (el

Sparse unknown vectors i.i.d. Gaussian noise wlth zgro-mean and
unknown noise variance

(v =yl A=C, 20w
x! = h'[/] w' = ny[/]
. /
[FZL16] J.

Fang, L. Zhang, and H. Li, “Two-dimensional pattern-coupled sparse Bayesian learning via generalized approximate message .
passing,” IEEE Transactions on Image Processing, vol. 25, no. 6, pp. 2920-2930, 2016.



Proposed pattern-coupled hierarchical model

/ -, - \ * We exploit the block-sparse structure along AoAs, AoDs,
1.1 and the common sparsity for all the delay taps, we define
; the prior 3
517% 1 p(x|e) = H H HNC 0,4, gt)
,BET'I gr=1ge=1/¢€L
L7.2
X £ {Xf [ e ﬁ}
¢ .
o= L . tel | . Pattern-coupling:
La,. .2
Ngr.g¢ =gp.ge + Brg,—1,g, + Brog, 41,
2 + Brag, go—1 + Brag, g, +1
1,G4
{Oj } — Hyperparameters controlling the sparsity
Gr.Jt
K Eleinery / B, € [0: 1] and [3; € [0: 1}—» Pattern relevance parameters

[FZL16] J. Fang, L. Zhang, and H. Li, “Two-dimensional pattern-coupled sparse Bayesian learning via generalized approximate message .
passing,” IEEE Transactions on Image Processing, vol. 25, no. 6, pp. 2920-2930, 2016.



Expectation maximization (EM) algorithm for the proposed sparse Bayesian

learning method
* Introduce the inverse of noise variance as another hyperparameter:

[ Y = 1/ 02] [T ™~ uh’low:ﬁ“ﬁm}} ]

« Utilize EM algorithm for learning the sparse signal X and the hyperparameters © = {x, ﬁ}

* Treat the sparse signal as hidden variable and maximize a lower bound on the posterior
probability p(O|y) (called Q-function)

* Alternate between E-step and M-step.

E-Step: Compute the posterior distribution of the M-Step: Estimate the hyperparameters by maximizing
sparse signal conditioned on the observed data and the | the Q-function
hyperparameters O+ —arg max Q(@|@(t))
_|_> Multivariate Gaussian distribution - ©
compute the mean and covariance matrix :a.rg(gnax Exlye@“) {np(Ofx.y)}
in closed-form! Only one suboptimal update, all
closed-form simple updates! 8




Learning the joint relations between AoAs and AoDs

4 ™
Apply the same EM maximization algorithm by arranging the system model such that the

observed variables are true channels that are available from the off-line training data
. y,

* Usetheuniformgridon |0, 7| with G, = 96 and G, = 24

* We add a small-variance noise ( ~ = 10% ) to obtain the original sparse model

/
ytrammg

l

/ /
- l]:"Xt1‘.51411111'1;;_f,' T Wtraining

e Obtain 10,000 sparse estimates ifraining and estimate the power distribution along

2, = 192 AoA and 2, = 48 AoD points (interpolation by 2 along both AoA and AoDs)



Learning the joint relations between AoAs and AoDs
» We propose a grid construction algorithm to adjust the grid points according to the power distribution.

» Start with a uniform grid with 96x24 points.
» Assign additional 96x8 grid points to the most yellowish regions by sorting the power values accordingly.
» Move the points to the places where the power of the sparse vectors obtained from the training data is greater.

» At the same time, try to prevent the neighboring grid points from being far away by some tuning.

| Power distribution of the sparse vectors g
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Evaluation: Test scores and final ranking

9 unknown data sets of received pilots obtained at SNRs ranging from -20 to 0 dB

e 1000 channels in each data set

* Normalized mean square error (NMSE) scores:

Using weights 0.5, 0.3, and 0.2,
giving more weight to the more
challenging settings (lower SNR and
less training):

Final performance score (PS) is
-9.48 dB

Rank Team-Name

1 ML-DOJO

2 ICARUS

3 Learned Chester

20 dB, -11 dB]| [-11 dB, -6 dB] | [-6 dB, O dB]
Pilot length: 20
-8.94 dB -9.99 dB -10.31 dB
Pilot length: 40 | 11 82 4B -11.33 dB -11.89 dB
Pilot length: 80 | 41 4 4B 12.47 dB -12.98 dB

11




Thank you!

ICARUS: Ozlem Tugfe Demir, Cenk M. Yetis, Emil Bjérnson, Pontus Giselsson

E-mail: ozlem.tugfe.demir@liu.se
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