Multi-Layer Perceptron for OBSS throughput prediction

Improving the capacity of IEEE 802.11 WLANs through ML ITU-ML5G-PS-013

Team: Ramon Vallés vallespuigramon@gmail.com

Ramon Vallés Puig

- Barcelona, Spain
- UPF student
- Undergraduate in computer science
- Interests in AI-ML in computer security

Problem description

Scenario

- Channel Bonding (aimed at next-generation WLANs).
- Complexity:
 - Distributed nature of WiFi.
 - Massively crowded scenarios.
 - ▶ High variability.
 - Spatial interactions among devices.

Goal

- Predict the performance of an Overlapping Basic Service Set (OBSS) throughput.
- Multilayer Perceptron (MLP)

Illustration of an OBBS (provided by the Host) https://www.upf.edu/web/wnrg/ai_challenge

Dataset

- Scenario 1 (12 APs, 10-20 STAs):
 - Scenario 1a (map size = 80 x 60 m): 100 random deployments
 - Scenario 1b (map size = 70 x 50 m): 100 random deployments
 - Scenario 1c (map size = 60 x 40 m): 100 random deployments
- Scenario 2 (8 APs, 5-10 STAs):
 - Scenario 2a (map size = 60 x 40 m): 100 random deployments
 - Scenario 2b (map size = 50 x 30 m): 100 random deployments
 - Scenario 2c (map size = 40 x 20 m): 100 random deployments

Analyzing Data

- Relevant data:
 - Received signal strength indicator (RSSI) 0
 - Signal-to-interference-plus-noise ratio (SINR) 0
 - Spatial coordinates 0
 - Number of Stations
 - Min and Max available channels (Bandwidth) 0
 - Airtime x Channel 0

		0.000000	Tasaa ayo	Lange and	to the second	1000		- 1.0
SINR mean -	1	0.83	-0.39	-0.0031	-0.37	0.22	-0.27	- 0.8
RSSI mean -	0.83	1	-0.71	-0.0023	-0.41	0.18	-0.19	- 0.6
Dist mean -	-0.39	-0.71	1	0.033	0.0069	-0.41	-0.036	- 0.4
N STAs -	-0.0031	-0.0023	0.033	1	-0.022	-0.034	-0.18	- 0.2
Airtime -	-0.37	-0.41	0.0069	-0.022	1	0.68	0.55	- 0.0
Real throughput -	0.22	0.18	-0.41	-0.034	0.68	1	0.28	0.4
abs error -	-0.27	-0.19	-0.036	-0.18	0.55	0.28	1	0.6
	SINR mean -	RSSI mean -	Dist mean -	N STAS –	Airtime -	Real throughput -	abs error -	

Proposed Model: MLP

The code of the proposed model is publicly available in https://github.com/VPRamon/MLP-Throughput-prediction

Training

Criterion:

$$RMSE = \sqrt{\sum_{i=1}^{n} \frac{(\hat{y}_i - y_i)^2}{n}}$$

Optimizer:

Adaptive moment estimation (Adam)

Training: 80%

Validation: 20%

Epochs	LR	Training loss	Validation loss
700	1E-2	13.14	13.25
500	1E-2	13.10	14.21
700	2E-2	12.69	12.96
500	2E-2	13.77	13.86
700	4E-2	13.15	13.48
500	4E-2	12.84	14.70

Testing

60 m

 \diamond \diamond

٥

Map size: 80x60m Scenario 1(4 APs) RMSE: 21.12 Mbps Scenario 2 (6 APs) RMSE: 19.18 Mbps Scenario 3 (8 APs) RMSE: 15.92 Mbps Scenario 4 (10 APs) RMSE: 17.38 Mbps

Conclusions

- Solution enabled by Y.3172 [1]
- Usage of synthetic datasets for training ML models in a Sandbox [2]
- Further improvements (GNN)
 - Capture fine-grained inter-device interference details
 - APs receive different amount of interference
 - ▷ Neighbour with high interference \rightarrow Freer Bandwidth \rightarrow Better performance
- Very entertaining challenge.

More interference = More Contention

Resources

- https://www.upf.edu/web/wnrg/ai_challenge
- https://zenodo.org/record/4059189
- <u>https://github.com/VPRamon/MLP-Throughput-prediction</u>

Thank you !

Questions?

Ramon Vallés Puig vallespuigramon@gmail.com

