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Current Wireless Networks: No Control of  Radio Waves
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Current Wireless Networks: No Control of  Radio Waves

“Dumb” Wireless



Current Wireless Networks: No Control of  Radio Waves

11

In conventional networks:



Current Wireless Networks: No Control of  Radio Waves

12

In conventional networks:
 We usually perceive the environment as an

“unintentional adversary” to communication



Current Wireless Networks: No Control of  Radio Waves

13

In conventional networks:
 We usually perceive the environment as an

“unintentional adversary” to communication

 We usually optimize only the end-points of the
communication network



Current Wireless Networks: No Control of  Radio Waves

14

In conventional networks:
 We usually perceive the environment as an

“unintentional adversary” to communication

 We usually optimize only the end-points of the
communication network

 We have no control of the environment, which is
viewed as a passive spectator



Current Wireless Networks: No Control of  Radio Waves

15

In conventional networks:
 We usually perceive the environment as an

“unintentional adversary” to communication

 We usually optimize only the end-points of the
communication network

 We have no control of the environment, which is
viewed as a passive spectator: we just adapt to it



Current Wireless Networks: No Control of  Radio Waves

16

In conventional networks:
 We usually perceive the environment as an

“unintentional adversary” to communication

 We usually optimize only the end-points of the
communication network

 We have no control of the environment, which is
viewed as a passive spectator: we just adapt to it

… WHAT IF …



Smart Radio Environments

17



Smart Radio Environments

18

Smart Wireless



Smart Radio Environments

19

Smart Wireless



Smart Radio Environments

20

Smart Wireless

… from adaptation to …

Control & Programmability
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Adaptation: End-Points Optimization
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Control & Programmability: Joint Optimization
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Smart Radio Environments

27

Smart Wireless

… from adaptation to …

Control & Programmability



Smart Radio Environments

28

Smart Wireless

… from adaptation to …

Control & Programmability
↓

Technology
↓

RISs (metasurface)

↓
Algorithms

↓
AI



Smart Radio Environments

29

Smart Wireless

… from adaptation to …

Control & Programmability
↓

Technology
↓

RIS (metasurface)

↓
Algorithms

↓
AI



Smart Radio Environments

30

Smart Wireless

… from adaptation to …

Control & Programmability
↓

Technology
↓

RIS (metasurface)

↓
Algorithms

↓
AI



Smart Radio Environments

31

Smart Wireless

… from adaptation to …

Control & Programmability
↓

Technology
↓

RIS (metasurface)

↓
Algorithms

↓
ML/AI
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Metasurface-Based RIS
(transparent and dynamic, Jan. 2020)
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From Reflections …
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… to Smart Reflections
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Reconfigurable Intelligent Surfaces 
(RISs)



What is an RIS ?
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July 14, 2020



What is an RIS ? …A New Antenna Technology for 6G
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July 14, 2020
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How Does an RIS Look Like ?
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Univ. California
San Diego

MobiCom 2020

Aalto University
Physics Appl. 2017MIT

USENIX 2020

Docomo 2020
Transparent Metasurface

Southeast 
University
TWC 2020

Tsinghua University
Access 2020

3,700 tiny antennas
6 m2 in size
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Conceptual Structure
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Conceptual Structure
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Conceptual Structure and Operation



What is an RIS Useful For ?
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What is an RIS Useful For ? …RIS-Empowered Wireless

M. Di Renzo et al., “Smart Radio Environments Empowered by RISs”, arXiv:2007.03435



Enhancing Coverage, Rate, Security Through RISs

54Y. Liu, M. Di Renzo et al., “RISs: Principles & Opportunities”, arXiv:2007.03435
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Nearly-Passive Design / Implementation

Normal Operation
Phase

Control & Configuration
Phase
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Nearly-Passive Design / Implementation

 An RIS is nearly-passive if the following three conditions are
fulfilled simultaneously:
 No power amplification is used after configuration (during the

normal operation phase)

 Minimal digital signal processing capabilities are needed only to
configure the surface (during the control and programming phase)

 Minimal power is used only to configure the surface (during the
control and programming phase)

Normal Operation
Phase  Passive

Control & Configuration
Phase
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Example of  Power Consumption
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Example of  Power Consumption

Compared with other transmission technologies, e.g.,
phased arrays, multi-antenna transmitters, and relays, RISs
require the largest number of scattering elements, but each
of them needs to be backed by the fewest and least costly
components. Also, no power amplifiers are usually needed.

RIS
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Example of  Power Consumption

… no free lunch rule …

Compared with other transmission technologies, e.g.,
phased arrays, multi-antenna transmitters, and relays, RISs
require the largest number of scattering elements, but each
of them needs to be backed by the fewest and least costly
components. Also, no power amplifiers are usually needed.

RIS
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For these reasons, RISs may constitute an emerging and
promising software-defined architecture that can be realized
at reduced cost, size, weight, and power (C-SWaP design)

C-SWaP



What Does Make an RIS Different ? 

66

Sustainable wireless design (e.g., low EMF exposure) without 
generating new waves and possibly made of  physically & 

aesthetically unobtrusive and recyclable material

C-SWaP Docomo 2020
Transparent Metasurface



Joint Active & Passive Wireless Networks Design

C. Yuen, M. Di Renzo et al., “Holographic MIMO Surfaces for 6G”, arXiv:1911.12296

“RISs can fundamentally
transform today’s wireless
networks with active nodes
solely to a new hybrid network
comprising active and passive
components co-working in an
intelligent way, in order to
achieve a sustainable capacity
growth with low and affordable
cost and power consumption”



Expert Knowledge Aided
Machine Learning



Wireless Networks Design in the Era of  ML

M. Di Renzo et al., Special Issue on 6G, Veh. Technol. Mag. 2020 (arXiv:1808.01672)
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What can machine learning do for 
communication theory ?
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What can communication theory do for 
machine learning ?



The Question
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Can we merge theoretical models 
with data-driven methods

taking the best of  both worlds ?
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Wireless 
Network

Optimization

input output

Given some input

We wish to compute the optimal output

That optimize the network performance
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Wireless 
Network
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input output
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“Learning to Optimize” Wireless Networks
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… the “conventional” data-driven approach …
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 Lots of data & interpretation of data

 Brute-force optimization

… the “conventional” data-driven approach …



How About the Quality of  Data and Bias ?
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“Modeling to Optimize” Wireless Networks
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Optimization

… the “conventional” comm-theoretic approach …



“Modeling to Optimize” Wireless Networks
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Optimization

… the “conventional” comm-theoretic approach …

Non-convex mixed-integer optimization

Real-time implementation is “challenging”
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 After training, computationally simple

 But, modeling mismatch is an issue



Modeling Assumption A, … Modeling Assumption Z
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… excerpts from a paper of  mine …
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… excerpts from a paper of  mine …



How Many “Comfortable” Assumptions Do We Need ?
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Tx
Rx

?



“Modeling to Optimize” Wireless Networks by ANNs
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Wireless Networks Design by “Transfer Learning”
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… combining live data and models …



Wireless Networks Design by “Transfer Learning”
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… combining live data and models …

 Correcting the model mismatch Less live data ?

Reduced complexity at “run time” (after training)
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Deep Learning for Wireless
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Model-Aided AI – Learning & Refining a Model



On “Transfer Learning” to Design Wireless Networks
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Joint Model-Aided and Data-Driven Optimization
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Wireless 
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input output
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Model-Based
ANN

input
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Model-Based
ANN

input
Data-Driven

ANN

input
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Model-Based
ANN

input output
Data-Driven

ANN

input



A Simple Example of  Transfer
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input output
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input output

Model-based ANN:
 Randomly chosen (initial) biases and weights

 Number of layers and neurons are hyper parameters

input
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input output

Model-based ANN:
 Randomly chosen (initial) biases and weights

 Number of layers and neurons are hyper parameters

Data-driven ANN:
 Input bias and weights from the model-based ANN

 Number of layers and neurons is left unchanged

input



Large-Scale Network Optimization – Example 
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Model
Poisson Point Process



Large-Scale Network Optimization – Example 
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Model
Poisson Point Process

Live Data
Lattice Point Process

VS.
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Step 1:
 Learning a Poisson Point Process: Learning a model

by deep learning
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Step 1:
 Learning a Poisson Point Process: Learning a model

by deep learning

Step 2:
 Learning a non-Poisson Point Process: Refining a

model via deep transfer learning



Numerical Example: Modeling vs. Reality
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Numerical Example: Modeling vs. Reality (Genie)
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Numerical Example: Modeling vs. Reality (Model)
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Numerical Example: Modeling vs. Reality (Few Data)
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Numerical Example: Modeling vs. Reality (Transfer)
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… Closing Remarks …
(Main Takes)



Programming the Environment: Towards Wireless 2.0
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Wireless 2.0: RISs & AI

130H. Gacanin and M. Di Renzo, Vehicular Technol. Mag., arXiv:2002.11040
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Were Are We  ?



Reconfigurable Intelligent Metasurfaces
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Were Are We  ?

Professor Stefano Maci, Huawei Antenna Summit 2019



Wireless 2.0: 6G Wireless + 3G Metasurfaces (JSAC)
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The Road Ahead: Reconciling COM, SP, IT, EM, …
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G. Green, “An Essay on the Application of Mathematical Analysis to the
Theories of Electricity and Magnetism”, 1828.

J. C. Maxwell, “A Dynamical Theory of the Electromagnetic Field”, 1865.

C. E. Shannon, “A (The) Mathematical Theory of Communication”, 1948.



From Model-or-Data to Model-and-Data Design…
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https://arxiv.org/abs/1902.02647



The Road Ahead: Reconciling COM, SP, IT, EM, & ML
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RIS @ IEEE-COMSOC
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Wireless Communications Technical Committee, Special
Interest Group: “Reconfigurable Intelligent Surfaces for
Smart Radio Environments (RISE)”

Signal Processing and Computing for Communications
Technical Committee, Special Interest Group:
“REconFigurabLE Intelligent Surfaces for Signal
Processing & CommunicatIONS (REFLECTIONS)”

Emerging Technology Initiative (ETI): “Reconfigurable
Intelligent Surfaces”

Best Readings, “Reconfigurable Intelligent Surfaces”



Further Information @ Google Scholar
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Thank You For Having Me… Appreciated…
 ICT-ARIADNE (H2020, 5G-PPP, grant 871464)

 November 1st, 2019 – October 31st, 2022

A collaborative research project on RISs & AI

Marco Di Renzo, Ph.D., H.D.R.
Directeur de Recherche CNRS (CNRS Professor)
Highly Cited Researcher, Web of  Science
IEEE Fellow, IEEE Communications Society
Editor-in-Chief, IEEE Communications Letters
Distinguished Lecturer, IEEE Communications Society
Distinguished Lecturer, IEEE Vehicular Technol. Society
Nokia Foundation Visiting Professor, Aalto Univ., Finland

Paris-Saclay University
Laboratory of  Signals and Systems (L2S)
CNRS and CentraleSupelec

E-Mail: marco.direnzo@centralesupelec.fr
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