

A Universal Compression Algorithm for Deep Neural Networks

Fraunhofer Heinrich Hertz Institute (HHI) Machine Learning Group Dr. Wojciech Samek

Al for Good Global Summit (virtual meeting), 21st August 2020

Deep Learning "Revolution"

Images, Text, Speech, Games

AlphaGo beats Go human champ

Computer out-plays humans in "doom"

Deep Net outperforms humans in image classification

Dermatologist-level classification of skin cancer with Deep Nets

Revolutionizing Radiology with Deep Learning

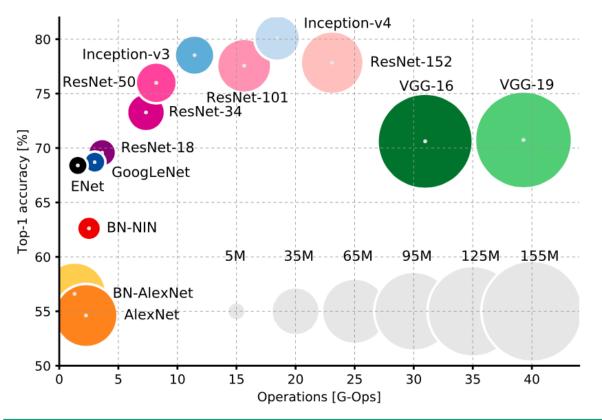
Ingredients for the success

- 1. Large volumes of data
- 2. Large (Deep) Models
- 3. Large Computing Power

Complexity of DNN is Growing

Fraunhofer

Heinrich Hertz Institute



Large Computational Resources Needed

Common carbon footprint benchmarks

in lbs of CO2 equivalent

🖉 Fraunhofer

Heinrich Hertz Institute

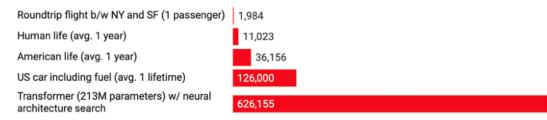


Chart: MIT Technology Review • Source: Strubell et al. • Created with Datawrapper

Processing at the "Edge"

JACK STEWART TRANSPORTATION 02.06.18 08:00 AM

SELF-DRIVING CARS USE CRAZY AMOUNTS OF POWER, AND IT'S BECOMING A PROBLEM

Shelley, a self-driving Audi TT developed by Stanford University, uses the brains in the trunk to speed around a racetrack autonomously.

NIKKI KAHN/THE WASHINGTON POST/GETTY IMAGES

Cameras and radar generate ~6 gigabytes of data every 30 seconds.

Self-driving car prototypes use approximately 2,500 Watts of computing power.

Generates wasted heat and some prototypes need water-cooling!

[slide from V. Sze]

Processing at the "Edge"

On-device deep learning

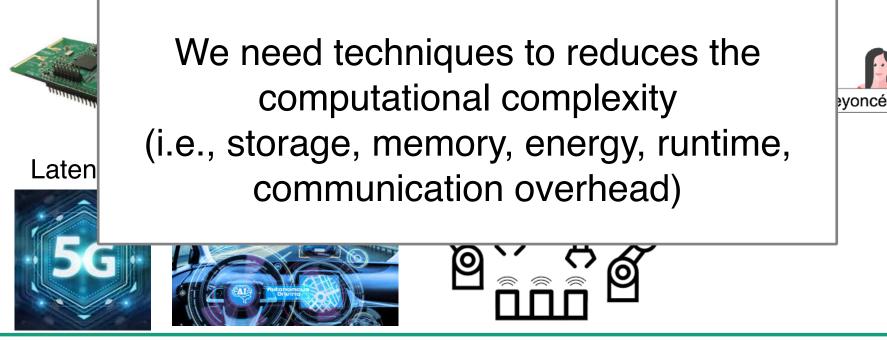
Distributed Data & Privacy

Latency & bandwidth constraints

Processing at the "Edge"

On-device deep learning

Distributed Data & Privacy



Standard on "Compression of Neural Networks for Multimedia Content Description and Analysis"

Outline of this talk

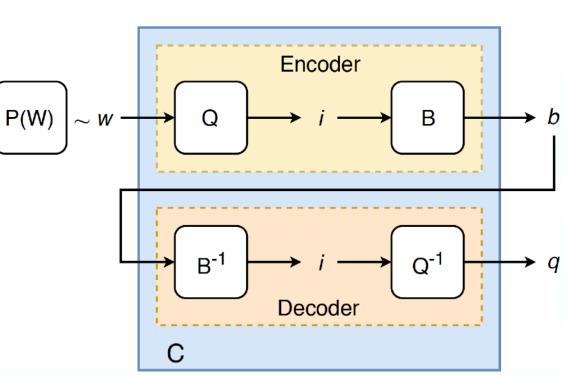
- 1. Background: Quantization & Encoding
- 2. DeepCABAC
- 3. Compression in Federated Learning

Background: Quantization & Encoding

Source Coding

Represent a signal with the minimum number of (binary) symbols without exceeding an "acceptable level of distortion".

Lossy Step + Lossless Step

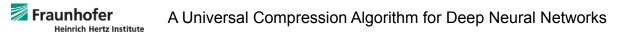


Source Coding

Goal: Minimize the rate-distortion objective:

$$C^* = \arg\min_{C} \mathbb{E}_{P(w)} \left[D(w,q) + \lambda L_C(b) \right]$$

where $b = (B \circ Q)(w)$ and $q = (Q^{-1} \circ Q)(w)$.



Lossless Coding

The minimum information required to fully represent a sample w that has probability P(w) is of -P log₂ P(w) bits (*Shannon*).

Challenges:

🖉 Fraunhofer

Heinrich Hertz Institute

- Decoder does not know P(w)
- P(w) may be non-stationary

Lossless Coding: Desired Properties

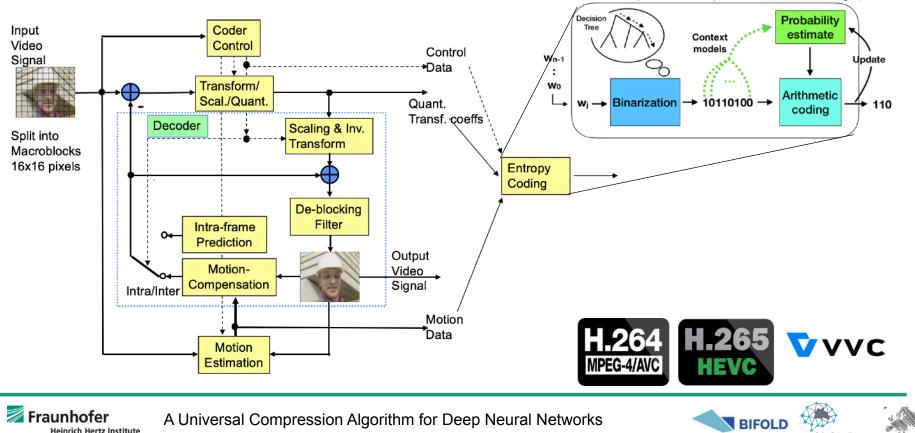
Fraunhofer

Universality: The code should have a mechanism that allows it to adapt its probability model to a wide range of different types of input distributions, in a sampleefficient manner.

Minimal redundancy: The code should produce binary representations of minimal redundancy with regards to its probability estimate.

High efficiency: The code should have high coding efficiency, meaning that encoding/decoding should have high throughput.

Video Coding Standards



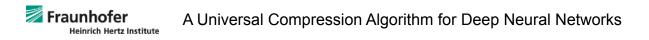
Context-based Adaptive Binary Arithmetic Coding (CABAC)

MASCHINELLES LERNEN

NN Coding

In NN coding, things are more complicated:

- complex distortion term (non-linear accumulation of errors)
- no clear structure in NN weights (e.g. in video high correlation between frames and neighboring pixels)
- more flexibility (e.g. fine-tuning, sparsification, structural changes)

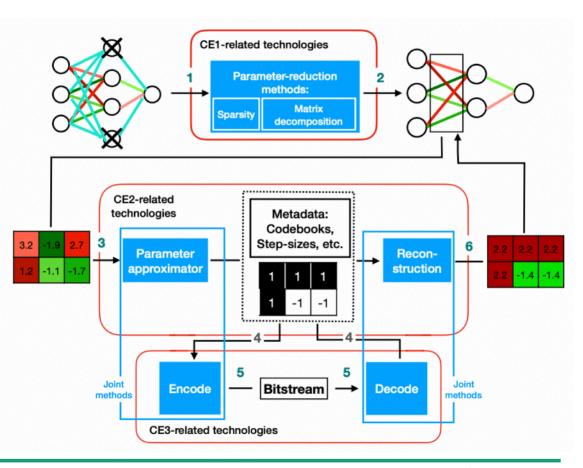


NN Coding

Fraunhofer

Heinrich Hertz Institute

is developing a standard on "Compression of Neural Networks for Multimedia Content Description and Analysis"



DeepCABAC

Lossy Coding

濍 Fraunhofer

leinrich Hertz Institute

Finding the optimal code is in most cases NP-hard

$$C^* = \arg\min_{C} \mathbb{E}_{P(w)} \left[D(w,q) + \lambda L_C(b) \right]$$

Idea: Fix the binarization map B by selecting a particular (universal) lossless code. Then just need to find a scalar quantizer

$$(Q, Q^{-1})^* = \underset{(Q, Q^{-1})}{\operatorname{arg min}} \mathbb{E}_{P(w_j)} \left[D(w_j, q_j) + \lambda L_Q(b_j) \right]$$

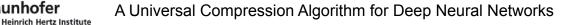
IEEE ICASSP 2020 Tutorial on Distributed and Efficient Deep Learning

$$(Q,Q^{-1})^* = \underset{(Q,Q^{-1})}{\operatorname{arg min}} \sum_{(x,y)\in\mathbb{D}} \mathcal{L}(y'',y') + \lambda L_Q(b)$$

Fraunhofer

$$y' \sim P(y'|x, w) \quad y'' \sim P(y''|x, q)$$

$$0.1 \\
0.05 \\
0.85 \\
0 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0.05 \\
0$$

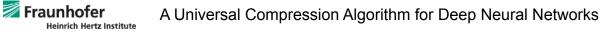


$$(Q, Q^{-1})^* = \underset{(Q, Q^{-1})}{\operatorname{arg min}} \sum_{\substack{(x, y) \in \mathbb{D}}} \mathcal{L}(y'', y') + \lambda L_Q(b)$$

$$\downarrow$$

$$(Q, Q^{-1})^* = \underset{(Q, Q^{-1})}{\operatorname{arg min}} \sum_{\substack{(x, y) \in \mathbb{D}}} D_{KL}(y''||y') + \lambda L_Q(b)$$

Use KL-divergence as distortion measure



$$(Q, Q^{-1})^* = \underset{(Q,Q^{-1})}{\operatorname{arg min}} \sum_{(x,y)\in\mathbb{D}} \mathcal{L}(y'', y') + \lambda L_Q(b)$$

$$\downarrow$$

$$(Q, Q^{-1})^* = \underset{(Q,Q^{-1})}{\operatorname{arg min}} \sum_{(x,y)\in\mathbb{D}} D_{KL}(y''||y') + \lambda L_Q(b)$$

$$\downarrow$$

$$(Q, Q^{-1})^* = \underset{(Q,Q^{-1})}{\operatorname{min}} (q - w) F(q - w)^T + \lambda L_Q(b)$$

濍 Fraunhofer

Heinrich Hertz Institute

If the output distributions do not differ too much, we can approximate KL with the Fisher Information Matrix (FIM)

$$(Q, Q^{-1})^* = \underset{(Q,Q^{-1})}{\operatorname{arg min}} \sum_{(x,y)\in\mathbb{D}} \mathcal{L}(y'', y') + \lambda L_Q(b)$$

$$\downarrow$$

$$(Q, Q^{-1})^* = \underset{(Q,Q^{-1})}{\operatorname{arg min}} \sum_{(x,y)\in\mathbb{D}} D_{KL}(y''||y') + \lambda L_Q(b)$$

$$\downarrow$$

$$(Q, Q^{-1})^* = \underset{(Q,Q^{-1})}{\operatorname{min}} (q - w)F(q - w)^T + \lambda L_Q(b)$$

$$\downarrow$$

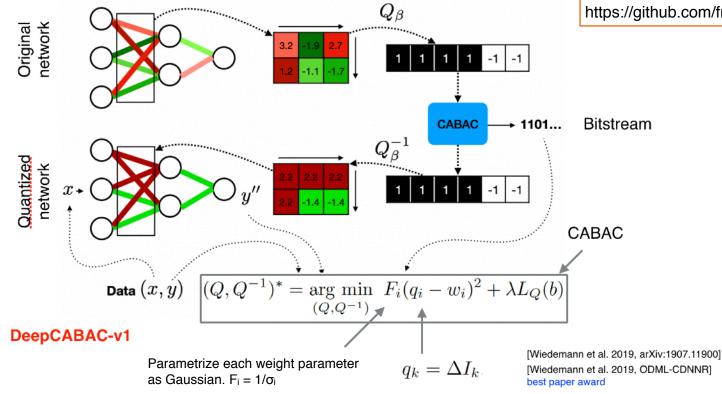
$$(Q, Q^{-1})^* = \underset{(Q,Q^{-1})}{\operatorname{arg min}} F_i(q_i - w_i)^2 + \lambda L_Q(b)$$

Fraunhofer

Heinrich Hertz Institute

Approximate FIM by only its diagonal elements

DeepCABAC: Weighted RD-based Quantization + CABAC



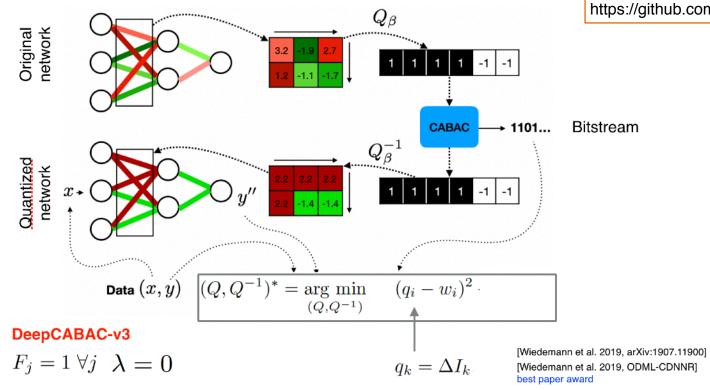
https://github.com/fraunhoferhhi/DeepCABAC

A Universal Compression Algorithm for Deep Neural Networks

🖉 Fraunhofer

Heinrich Hertz Institute

DeepCABAC: Uniform Quantization + CABAC



https://github.com/fraunhoferhhi/DeepCABAC

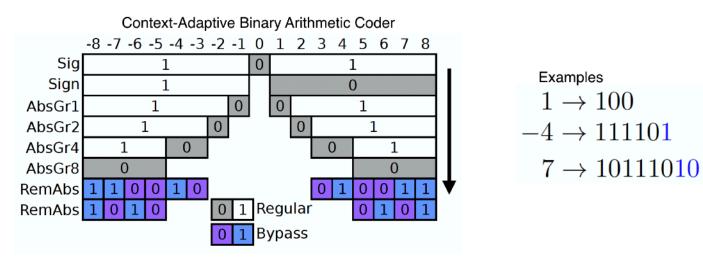
A Universal Compression Algorithm for Deep

🖉 Fraunhofer

Heinrich Hertz Institute

ural Networks

Properties of CABAC



Properties of CABAC

Heinrich Hertz Institute

濍 Fraunhofer

Binarization: represents each unique input value as a sequence of binary decisions.

<u>Context modelling</u>: probability model for each decision, which is updated on-the-fly by the local statistics of the data -> universality.

Arithmetic coding: arithmetic coding for each bit -> minimal redundancy + high efficiency

Some Results

Fraunhofer

Heinrich Hertz Institute

Sparse Models (sparsity [%])	Org. Acc. Top1 [%]	Os size [MB]	DeepCABAC (acc. [%])
VGG16 (9.85)	69.43	553.43	1.57 (69.43)
ResNet50 (74.12)	74.09	102.23	4.74 (73.65)
Small-VGG16 (7.57)	91.35	60.01	1.6 (91.00)
LeNet5 (1.90)	99.22	1.72	0.72 (99.16)

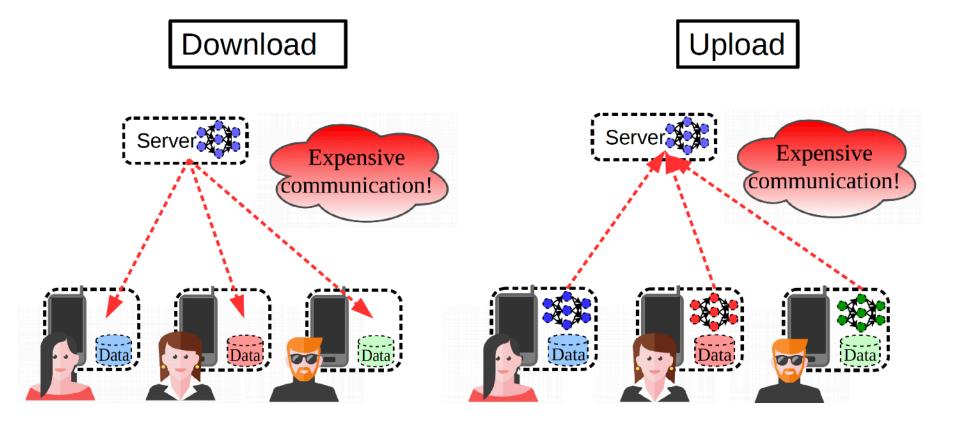
Some Results

Sparse Models (sparsity [%])	Org. Acc. Top1 [%]	Os_size [MB]	DeepCABAC (acc. [%])	
VGG16	69.43	553.43	1.57	
VGG16 553.4MB -> 8.7MB at an acc. 69.43%				

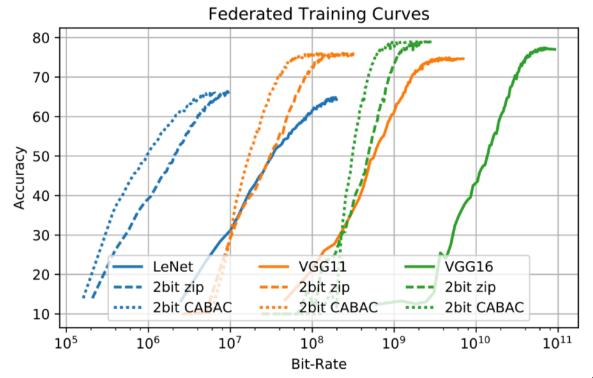
ResNet50 102.2MB-> 4.85MB at an acc. 73.65%

Small-VGG16 (7.57)	91.35	60.01	1.6 (91.00)
LeNet5 (1.90)	99.22	1.72	0.72 (99.16)

Compression in Federated Learning



Plug & Play compression by DeepCABAC



[Neumann et al. 2020, IEEE ICIP]

Total Communication = [#Communication Rounds] x [#Parameters] x [Avg. Codeword length]

Case Study: VGG16 on ImageNet

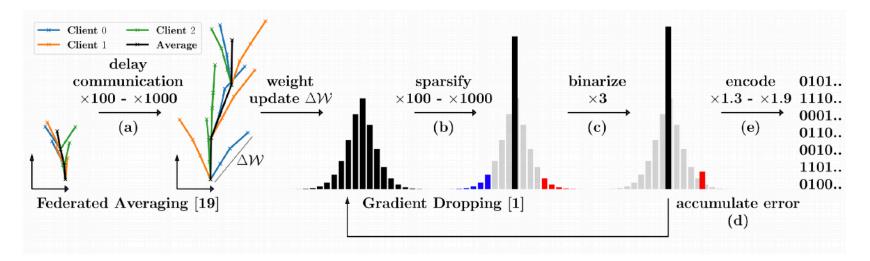
- Number of Iterations until Convergence: 900.000
- Number of Parameters: 138.000.000
- Bits per Parameter: 32

→ Total Communication = 496.8 Terabyte (Upload+Download)

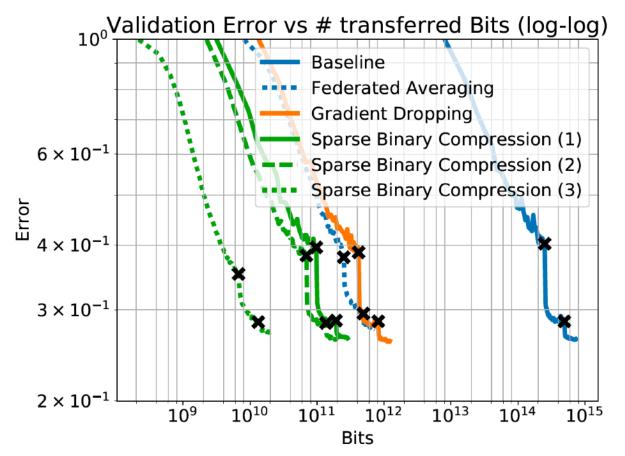
Total Communication = [#Communication Rounds] x [#Parameters] x [Avg. Codeword length]

Compression Methods

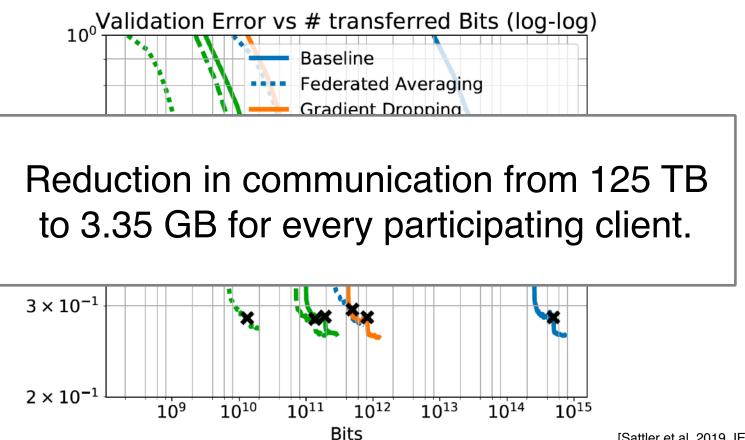
- Communication Delay
- Lossy Compression: Unbiased
- Lossy Compression: Biased
- Efficient Encoding



Sattler, et al. "Sparse binary compression: Towards distributed deep learning with minimal communication." 2019 International Joint Conference on Neural Networks (IJCNN).



[Sattler et al. 2019, IEEE IJCNN]



[Sattler et al. 2019, IEEE IJCNN]

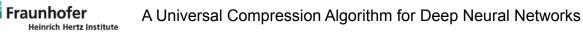
Compression	Method \longrightarrow	Baseline	DGC ³	Fed. Avg. ⁴	SBC (1)	SBC (2)	SBC (3)
LeNet5-Caffe	Accuracy	0.9946	0.994	0.994	0.994	0.994	0.991
@MNIST	Compression	$\times 1$	$\times 718$	$\times 500$	$\times 2071$	$\times 3166$	$\times 24935$
ResNet18	Accuracy	0.946	0.9383	0.9279	0.9422	0.9435	0.9219
@CIFAR10	Compression	$\times 1$	$\times 768$	$\times 1000$	$\times 2369$	$\times 3491$	× 31664
ResNet34	Accuracy	0.773	0.767	0.7316	0.767	0.7655	0.701
@CIFAR100	Compression	$\times 1$	$\times 718$	$\times 1000$	$\times 2370$	$\times 3166$	$\times 31664$
ResNet50	Accuracy	0.737	0.739	0.724	0.735	0.737	0.728
@ImageNet	Compression	$\times 1$	$\times 601$	$\times 1000$	$\times 2569$	$\times 3531$	$\times 37208$
WordLSTM	Perplexity	76.02	75.98	76.37	77.73	78.19	77.57
@PTB	Compression	$\times 1$	$\times 719$	$\times 1000$	$\times 2371$	$\times 3165$	$\times 31658$
WordLSTM*	Perplexity	101.5	102.318	131.51	103.95	103.95	104.62
@WIKI	Compression	$\times 1$	$\times 719$	$\times 1000$	$\times 2371$	$\times 3165$	$\times 31657$

Next Standard ?

	TERNATIONAL ORGANISATION FOR STANDARDISATION ORGANISATION INTERNATIONALE DE NORMALISATION	
ISO/IEC JTC1/SC29/WG11		
CODING OF MOVING PICTURES AND AUDIO		
	ISO/IEC JTC1/SC29/WG11/ N19228 April 2020, <u>Alpbach</u> , AT	
Source	Video	
Status	Approved	
Title	Call for Incremental NNR Test Materials	

Conclusion

- Efficiency in storage, memory, energy, runtime, communication ...
- DeepCABAC based on established compression technology
- Different options (e.g. fine-tuning, structural changes, NAS)
- Hardware co-design is crucial
- MPEG standardization is moving forward



🖉 Fraunhofer

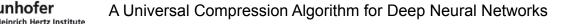
Neural Network Compression

S Wiedemann, H Kirchhoffer, S Matlage, P Haase, A Marban, T Marinc, D Neumann, T Nguyen, A Osman, H Schwarz, D Marpe, T Wiegand, W Samek. <u>DeepCABAC: A Universal Compression Algorithm for Deep Neural</u> <u>Networks</u>. *IEEE Journal of Selected Topics in Signal Processing*, 14(4):700-714, 2020. http://dx.doi.org/10.1109/JSTSP.2020.2969554

S Yeom, P Seegerer, S Lapuschkin, S Wiedemann, KR Müller, W Samek. <u>Pruning by Explaining: A Novel Criterion</u> <u>for Deep Neural Network Pruning</u>. *arXiv:1912.08881*, 2019. https://arxiv.org/abs/1912.08881

S Wiedemann, H Kirchhoffer, S Matlage, P Haase, A Marban, T Marinc, D Neumann, A Osman, D Marpe, H Schwarz, T Wiegand, W Samek. <u>DeepCABAC: Context-adaptive binary arithmetic coding for deep neural network</u> <u>compression</u>. Joint ICML'19 Workshop on On-Device Machine Learning & Compact Deep Neural Network Representations (ODML-CDNNR), 1-4, 2019. *** Best paper award *** https://arxiv.org/abs/1905.08318

S Wiedemann, A Marban, KR Müller, W Samek. <u>Entropy-Constrained Training of Deep Neural Networks</u>. *Proceedings of the IEEE International Joint Conference on Neural Networks (IJCNN)*, 1-8, 2019. http://dx.doi.org/10.1109/IJCNN.2019.8852119



Efficient Deep Learning

S Wiedemann, KR Müller, W Samek. <u>Compact and Computationally Efficient Representation of Deep Neural Networks</u>. *IEEE Transactions on Neural Networks and Learning Systems*, 31(3):772-785, 2020. http://dx.doi.org/10.1109/TNNLS.2019.2910073

S Wiedemann, T Mehari, K Kepp, W Samek. <u>Dithered backprop: A sparse and quantized backpropagation</u> <u>algorithm for more efficient deep neural network training</u>. *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 3096-3104,* 2020. https://dx.doi.org/10.1109/CVPRW50498.2020.00368

A Marban, D Becking, S Wiedemann, W Samek. <u>Learning Sparse & Ternary Neural Networks with Entropy-</u> <u>Constrained Ternarization (EC2T)</u>. *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 3105-3113,* 2020. https://dx.doi.org/10.1109/CVPRW50498.2020.00369

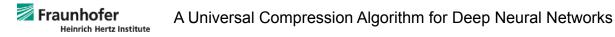
Federated Learning

F Sattler, T Wiegand, W Samek. <u>Trends and Advancements in Deep Neural Network Communication</u>. *ITU Journal: ICT Discoveries*, 3(1), 2020. https://www.itu.int/en/journal/2020/001/Pages/07.aspx

F Sattler, KR Müller, W Samek. Clustered Federated Learning: Model-Agnostic Distributed Multi-Task Optimization under Privacy Constraints. *IEEE Transactions on Neural Networks and Learning Systems*, 2020. https://arxiv.org/abs/1910.01991

F Sattler, S Wiedemann, KR Müller, W Samek. <u>Robust and Communication-Efficient Federated Learning from</u> <u>Non-IID Data</u>. *IEEE Transactions on Neural Networks and Learning Systems*, 2019. http://dx.doi.org/10.1109/TNNLS.2019.2944481

F Sattler, KR Müller, W Samek. <u>Clustered Federated Learning</u>. *Proceedings of the NeurIPS*'19 Workshop on Federated Learning for Data Privacy and Confidentiality, 1-5, 2019.

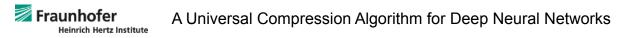


Federated Learning

F Sattler, KR Müller, T Wiegand, W Samek. <u>On the Byzantine Robustness of Clustered Federated Learning</u>. *Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, 8861-8865, 2020. http://dx.doi.org/10.1109/ICASSP40776.2020.9054676

F Sattler, S Wiedemann, KR Müller, W Samek. <u>Sparse Binary Compression: Towards Distributed Deep Learning</u> <u>with minimal Communication</u>. *Proceedings of the IEEE International Joint Conference on Neural Networks* (*IJCNN*), 1-8, 2019. http://dx.doi.org/10.1109/IJCNN.2019.8852172

D Neumann, F Sattler, H Kirchhoffer, S Wiedemann, K Müller, H Schwarz, T Wiegand, D Marpe, W Samek. <u>DeepCABAC: Plug&Play Compression of Neural Network Weights and Weight Updates</u>. Proceedings of the IEEE International Conference on Image Processing (ICIP), 2020.



Slides and Papers available at

www.federated-ml.org

