

Safety First for Automated Driving

ADA/ITU Workshop in Budapest on the 10th September

Anti trust note: All following information need to be understood as a minimum basis shared commonly by the partner consortium. A complete safety case for a concrete product depends heavily on the specific operational design domain and needs always specific additional measures.

Chassis & Safety continental-corporation.com

David Lanyi

Head of Machine Learning Methods

Continental BU ADAS – Deep Learning Competence Center

- 2018- Continental
- 2012-2018 IBM Research Zurich
- 2014-2015 ETH Zurich
- MS in computer science, Budapest University of Technology and Economics

Abstract

Automated Driving Systems

> Publication merges input of OEMs, tiered suppliers and key technology providers

- Positive risk balance
 - Safety by design and verification & validation methods
 - Comprehensive approach to safety relevant topics

Intends to collaborate to industrywide standardization

The Twelve Principles of Automated Driving

SAFE OPERATION

- Deal with degradation
- Fail operational

- Recognize system limits
- React to minimize the risk

- ODD determination
- Manage typical situations

BEHAVIOR IN TRAFFIC

- Manners on the road
- Conforming to rules

USER RESPONSIBILITY

- Responsibilities
- Mode awareness

VEHICLE-INITIATED HANDOVER

- Minimal risk condition
- Takeover request

Public

VEHICLE OPERATER-INITIATED HANDOVER

- Engaging and disengaging of AD system
- Ensure intent of handover with high confidence

Take effects on the driver due to automation into account

DATA RECORDING

- > Record relevant data when an event or incident is recognized
- > Complies with the applicable data privacy laws

SECURITY

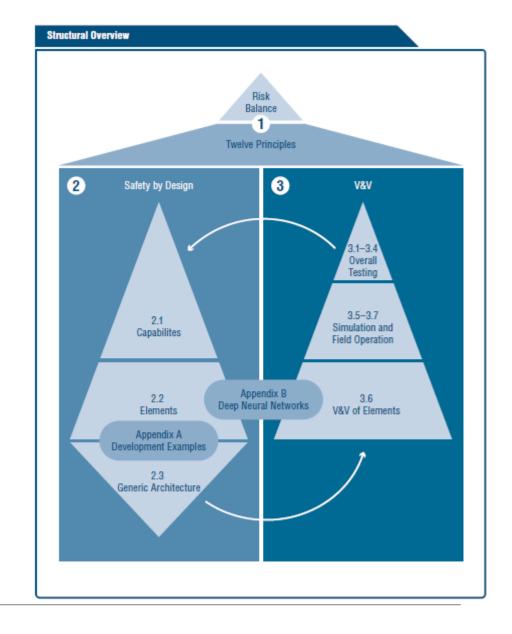
Protect the automated driving system from security threats

PASSIVE SAFETY

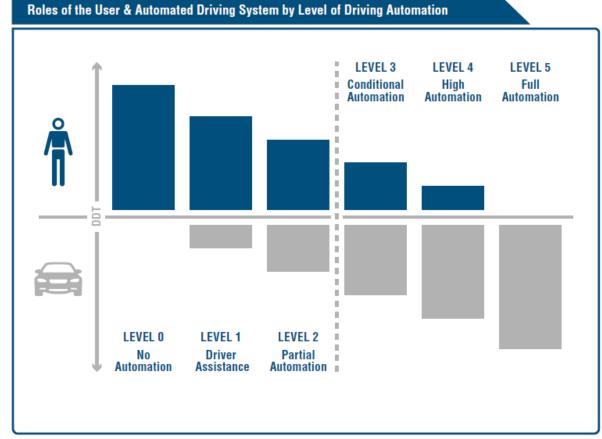
- Crash scenarios (vehicle layout modifications)
- Alternative seating position (new uses for the interior)

SAFETY ASSESSMENT

- Verification and validation to ensure that safety goals are met
- Reach a consistent improvement of the overall safety

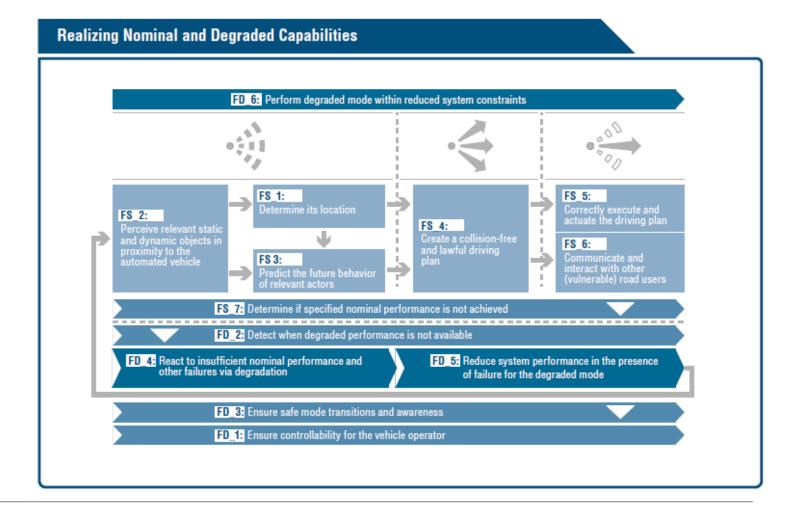


Structure of this Publication


- This publication is structured as interconnected topics which build upon one another to achieve an overall safety vision.
- The roof ridge in the figure represents the **positive** risk balance as an initial starting point and the overall goal.

Human-Machine Interaction

- > Introducing L3 automated driving system,
 - the vehicle operator is allowed to cede full control to the vehicle during the nominal driving task within ODD
 - user's correct interpretation of the actual driving mode and related responsibility for dynamic driving tasks (DDT) is crucial to enable safe driving

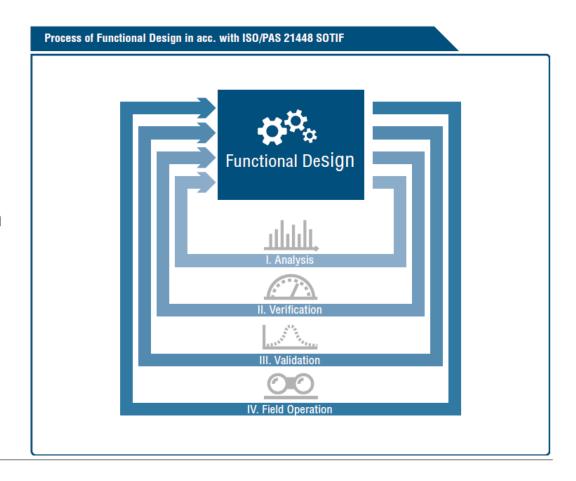


levels of automation according to SAE J3016

Realizing Nominal and Degraded Capabilities

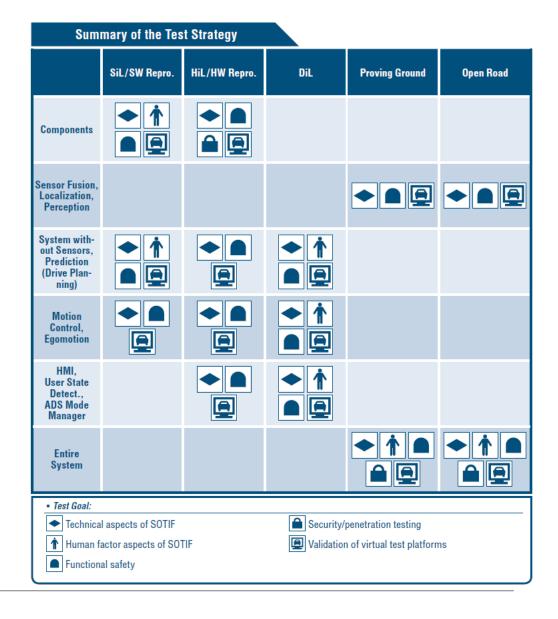
- Capabilities based on
 Sense Plan Act to achieve
 nominal performance
- Ensure degradation in case of insufficient nominal performance or other failures
- Ensure safe mode transitions

Example Traffic Jam Pilot (L3)


Nominal Function Definition	 Vigilant driver with driver's license, driving only on structurally separated roads typically no pedestrians or cyclists 60 km/h max only with leading vehicles no lane changing no construction sites only during daylight, without rain only temperatures higher than freezing point
Minimal Risk Conditions	 > Driver has taken over control > Deactivate as soon driver has control or the vehicle is stopped > Vehicle is stopped in-lane > Immediately stop the vehicle with fixed deceleration > lateral vehicle movement based on last valid trajectory

Sensing Elements for Localization	Determine whether the vehicle is on the highway
Sensing Elements for Perceive Relevant Objects	 Leading vehicles in front of the ego vehicle Lane markings (vulnerable) road users (even though they are excluded from the ODD) Diversity object detection methods are preferred to cover the performance weakness of single sensors High-level object fusion is considered a meaningful measure
ADS Mode Manager	 Check activation conditions Check deactivation conditions Ensure that the vehicle has either reached a fail-safe state Or that the user has safely taken over control

Verification and Validation Key Challenges for V&V of L3 and L4 Systems

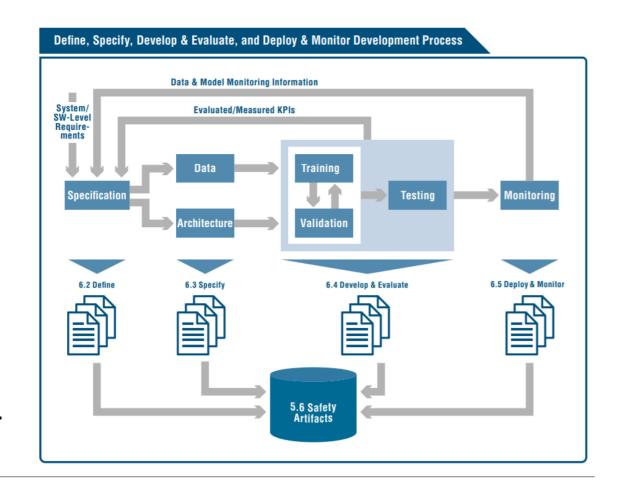

- Statistical demonstration of system safety and a positive risk balance without driver interaction
- System safety with driver interaction (especially in takeover maneuvers)
- Consideration of scenarios currently not known in traffic
- Validation of various system configurations and variants
- Validation of (sub) systems that are based on machine learning

Test Strategies

- A viable test strategy responds to the key challenges in the V&V of automated driving systems
 - by carefully breaking down the overall
 validation objective into specific test goals
 for every object under test
 - and by defining appropriate test platforms and test design techniques

Safety Aspects of Machine Learning Systems

General considerations

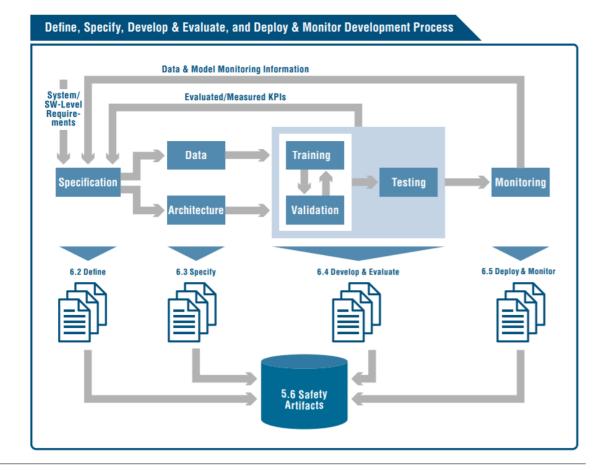

De agnostic to means of implementation; documentation during full process chain, creation of safety artefacts.

Define

 ODD, data set, probabilistic output, KPIs, target hardware

Specify

Data set specs, labelling specs, labelling quality, DL model architectures, observers.


Safety Aspects of Machine Learning Systems

Develop & Evaluate

DL model architecture (layers, connectivity, activations, pooling/upsampling, stride, ...); composition of loss, regularization, optimization methods (solver, learning rate, ...).

Deploy & Monitor

 Challenges: unseen data, confidence interpretation, emerging features, distributional shift.

David Lanyi

Head of Machine Learning Methods

Continental BU ADAS – Deep Learning Competence Center

- 2018- Continental
- 2012-2018 IBM Research Zurich
- 2014-2015 ETH Zurich
- MS in computer science, Budapest University of Technology and Economics

