ITU Workshop on Innovative ICT Technologies Tashkent, Uzbekistan 21-22 September 2016

5G and Tactile Internet. Network and Services
Decentralization

Ruslan Kirichek

Head of Internet of Things laboratory SPbSUT,
Saint - Petersburg State University of
Telecommunications
kirichek@sut.ru

Fifth-Generation networks

- 5G or IMT-2020 a new generation of telecommunication standards
- In June 2015, the ITU has developed a roadmap of IMT-2020
- The full implementation of IMT-2020 is expected by 2020 at the latest

Roadmap of «IMT-2020»

CCITT / ITU-T

Vision of IMT-2020 (5G)

Utility management

https://ec.europa.eu/digital-agenda/en/towards-5g

Potential technologies of IMT-2020/5G

- Multiple MIMO antennas
- Using the centimeter and millimeter frequency ranges
- UDN Ultra-Dense networking
- D2D (Device-to-Device) Communications
- SDN (Software-Defined Network)
- NFV (Network Functions Virtualization)
- The convergence of all existing legacy technologies

Estimated parameters of 5G networks

- Data rate:
 10-50 Gb/s (Download); 100 Mb/1 Gb/s (Upload)
- Delay 1 millisecond
- Frequency range (in July 2016):

```
28 GHz (27,5-28,35 GHz)
```

37 GHz (37-38,6 GHz)

39 GHz (38,6-40 GHz)

64-71 GHz

95 GHz (in future)

- Number of subscriber's units in the cell up to 300K
- Failure probability is less than 10^{-7} (layup 3.17 s/year)

Network architecture of 5G networks

5G network will be based on three subsystems (clouds):

- Access Cloud
- Control Cloud
- Core cloud

"On demand" architecture

Key issues of the implementation of 5G

- Current wireless technologies, which are available at the access level, cannot achieve the data rate ~10 Gb/s
- Standardization and implementation of new technologies are needed:
 - MU-MIMO
 - SCMA, MUSA,...
 - F-OFDM, FB-OFDM,...
 - Polar Code
 - WiGig and etc.

New application of IoT - Tactile Internet

2014

CCITT/ITU-T

Evolution of delays

Network	Delay value
NGN	100 ms
Telemedicine network	10 ms
Tactile Internet	1 ms

Evolution of data rate

Network	The data rate at the access layer	The data rate at the core
NGN	MB/s	GB/s
Communication networks with the low latency	GB/s	TB/s
Tactile Internet	TB/s	PB/s

Architecture of Tactile Internet

Master Domain Network Domain Slave Domain

M. Maier, M. Chowdhury, B. P. Rimal, D. Pham Van, "The Tactile Internet: Vision, Recent Progress, and Open Challenges," IEEE Communications Magazine, vol. 54, May 2016

Applications of Tactile Internet

- 1. Augmented reality
- 2. Telemedicine network
- 3. Emergencies

Gloves which transmit feelings

Tactile mattress for babies

Virtual Reality
Augmented Reality

Existing Cellular Technologies are not ready for Tactile Internet

Technology	The data rate	Delay
GPRS	114 kbps	~ 500 ms
EDGE	236.8 kbps	~ 250 ms
W-CDMA	384 kbps	~ 200 ms
HSPA	2 Mbps	~ 150 ms
HSPA	42 Mbps	~ 70 ms
LTE	300 Mbps	~ 30 ms
LTE-A	1 Gbps	~ 20 ms

The model network for testing Tactile Internet applications

Decentralized networks

- Computer networks which are based on the equality of participants
- In such networks, there are no dedicated servers. Every node (peer) is client/server
- In spite of a client/server-based architecture, this architecture is robust and can function with any number of available nodes

Hybrid networks (partially decentralized)

- There are servers which are used for coordinating, searching and providing information about existing network equipment and their status (on-line, off-line, etc.)
- Hybrid networks are rapid, as centralized networks, and reliable as they are based on the independent indexing servers which synchronize information between themselves
- Network will continue functioning even though one or more servers are broken

Services of decentralized networks

- Data storage
- Security of information
- Bank transfers

Clouds are located closer to the consumer

To reduce network latency, it is advised to place a cloud closer to the user:

- Home-based cloud (e.g. for IoT-devices of smart home)
- Cloud for augmented reality applications
- Cloud for nanonetworks to be used in telemedicine

Conclusions (1)

- 1. 5G networks become a platform for different applications of the Internet of Things. The main traffic will be consumed by devices, not people
- 2. The basic architecture of the 5G networks is determined new standards and guidelines for the implementation of 5G are needed
- 3. Due to the high data rates and low latency in the future networks, a new application of IoT "Tactile Internet" can be made available

Conclusions (2)

- 4. Model Network needs to be set up for simulating interconnection scenarios for Tactile Internet
- 5. Network decentralization can be used for delivering new services, such as distributed data storage, information security, banking, to name a few

Ruslan Kirichek

Head of Internet of Things laboratory SPbSUT

Tel: +7 812 3051265

Mob.: +7 921 9700160

e-mail: kirichek@sut.ru

web: www.iotlab.ru

