Possible network parameters on IMT-2020/5G transport network

16th, October, 2017 KDDI (Japan) Noboru Yoshikane

Agenda

1. Introduction

- ✓ ITU-R IMT vision
- ✓ Possible usage scenarios

2. Possible 5G network deployment scenario

- ✓ Network structures
- ✓ Deployment scenario

3. Possible 5G network parameters

- ✓ Network topology
- ✓ Bandwidth, Interface type, Latency, etc.

4.Summary

ITU-R IMT Vision (IMT-2020)

✓ Enhancement of key capabilities from IMT-Advanced to IMT-2020

Reference: IMT Vision – "Framework and overall objectives of the future development of IMT for 2020 and beyond", ITU-R Recommendation M.2083-0, September 2015.

ITU-R IMT Vision (IMT-2020) (Cont'd)

- The importance of key capabilities in different usage scenarios
 - eMBB, mMTC, and URLLC

Reference: IMT Vision – "Framework and overall objectives of the future development of IMT for 2020 and beyond", ITU-R Recommendation M.2083-0, September 2015.

Possible 5G usage scenarios

The user-centric broadband world

Realistic-sensational remote virtual experience

Industry promotion, Social Infrastructure

Connected car

Control of unmanned agricultural machine

Viewing real-time freeviewpoint 3D video

Security camera

CLL: The mobile brand of KDDI.

Agenda

- 1. Introduction
 - ✓ ITU-R IMT vision
 - ✓ Possible usage scenarios

2. Possible 5G network deployment scenario

- ✓ Network structures
- ✓ Deployment scenario

3. Possible 5G network parameters

- ✓ Network topology
- ✓ Bandwidth, Interface type, Latency, etc.

4.Summary

Possible radio access network

- 5G bands will be used in combination with 4G to complement each other.
 - Requirement of use cases (Mobility, Area, Latency, etc.)
 - Separation of C-plane and U-plane
 - Standalone(SA), Non-Standalone(NSA) scenarios

Slice network

Example: Multiple slices concurrently operated on the same infrastructure.

Figure 9: 5G network slices implemented on the same infrastructure

Reference: NGMN 5G White paper, next generation mobile networks, February 2015.

Toward 5G network (3GPP)

3GPP has approved a consensus to move forward on plans to accelerate specifications for a non-standalone (NSA).

Possible 5G deployment scenario

- Initial phase: Large capacity services(eMBB)
- Second phase: Low latency services(URLLC), loT services(mMTC)

Agenda

- 1. Introduction
 - ✓ ITU-R IMT vision
 - ✓ Possible usage scenarios
- 2. Possible 5G network deployment scenario
 - ✓ Network structures
 - ✓ Deployment scenario
- 3. Possible 5G network parameters
 - ✓ Network topology
 - ✓ Bandwidth, Interface type, Latency, etc.

4.Summary

Possible network topologies

■Fronthaul, Middlehaul, and Backhaul networks

- Network reach
 - Fronthaul network: Less than 20 km
 - Middlehaul/Backhaul network: Less than 200 km

Possible network topologies are the same as the networks described in TD78r2/G.

Reference: TD78r2/G "Transport network support for IMT-2020/5G," ITU-T SG15 plenary meeting, Geneva, 19-30 June 2017.

Possible network topologies (Cont'd)

RRU and DU Integration

RRU, DU and CU Integration

Reference: TD78r2/G "Transport network support for IMT-2020/5G," ITU-T SG15 plenary meeting, Geneva, 19-30 June 2017.

Possible 5G network parameters

Items	Parameters
Network reach	Fronthaul: Less than 20 km Middle/Backhaul: Less than 200 km
Estimated values for bandwidth	Fronthaul: N x 10 G or higher (e.g. 25 G) Middle/Backhaul: N x 100 G or beyond 100 G
Estimated values for latency allocation	UE – CU: less than 4 ms (Tentative)
Estimated interface type	Fronthaul: eCPRI, etc. Middle/Backhaul: 100 GbE or beyond 100 GbE (over OTN)
Slice	Each service should be isolated at layer 2 or higher (e.g. VLAN, etc.)
Synchronization	N/A (GPS-based synchronization)
OAM	Packet network based OAM (e.g. E-OAM)

Summary

■Possible usage scenarios for 5G network era

- Three important capabilities
 - eMBB, mMTC, URLLC
- Vivid experience, Industry promotion, Social infrastructure
 - Viewing real-time free-viewpoint video, Connected car, etc.

■Possible 5G network deployment scenario

 The 5G networks are going to be built around a combination of the 4G networks (Non-standalone (NSA) approach).

■Possible 5G network parameters

 Network reach, Bandwidth, Latency allocation, Interface type, Slice, Synchronization, and OAM.

