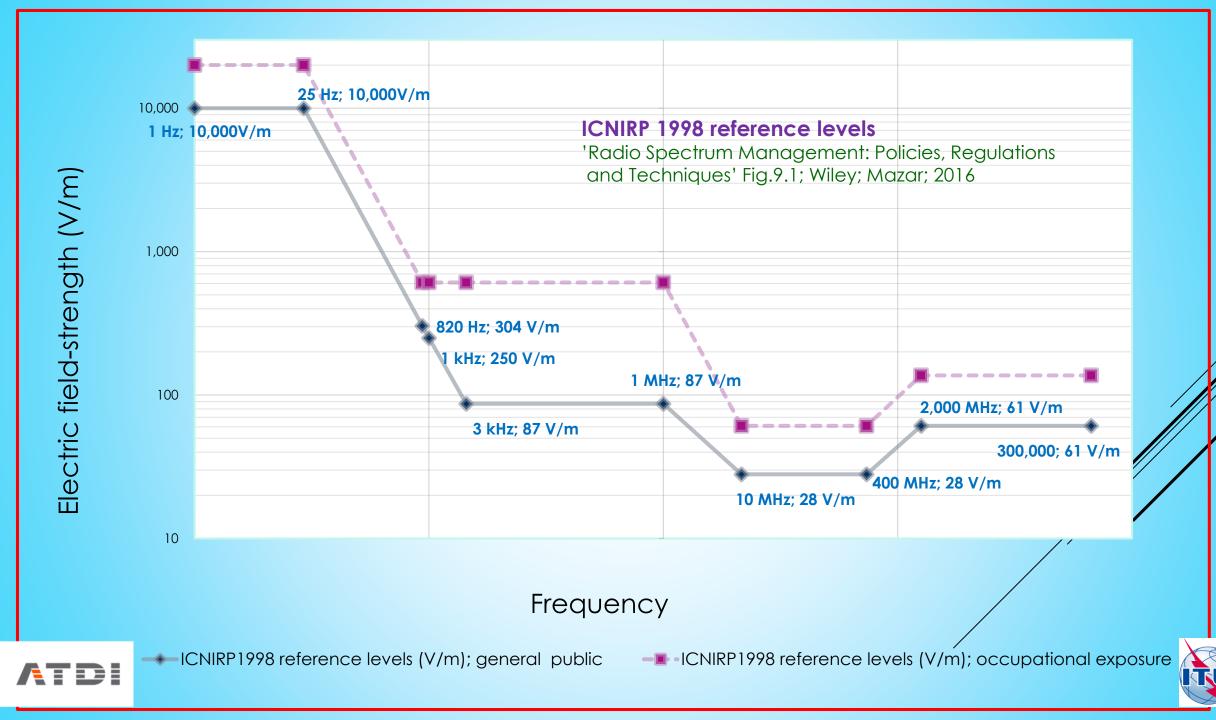
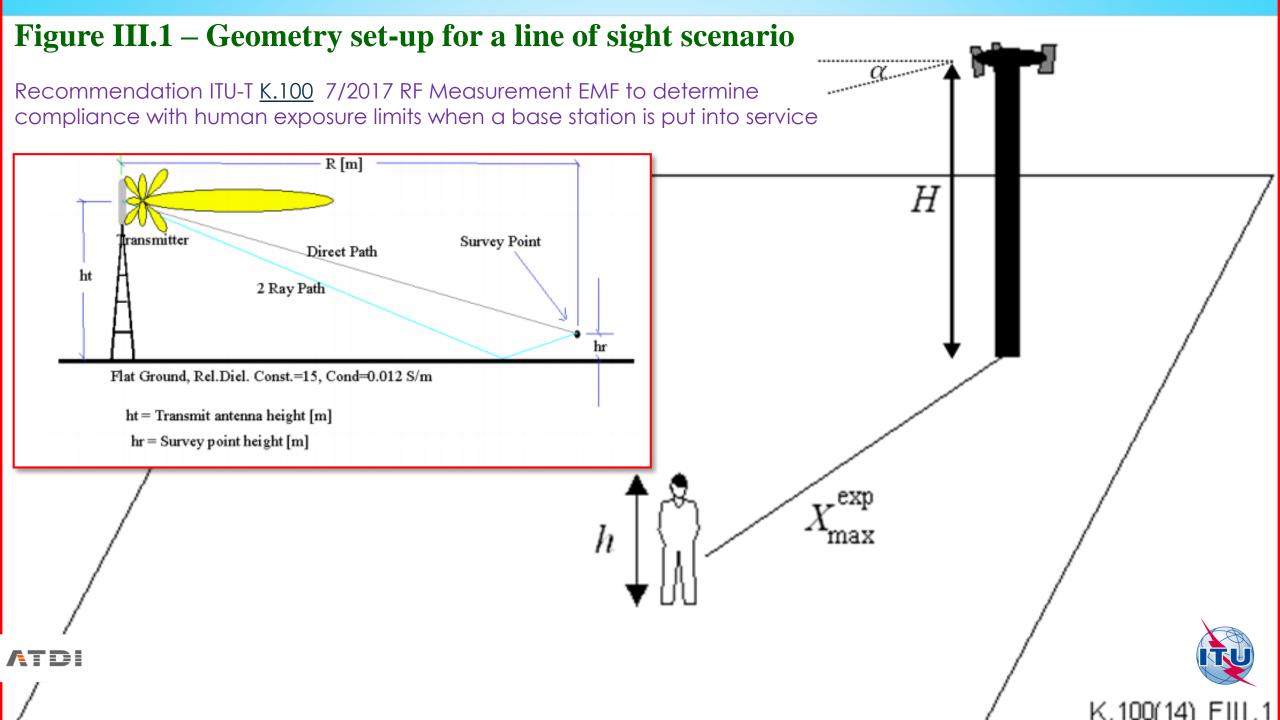
ITU Workshop on "5G, EMF & Health" (Warsaw, Poland, 5 December 2017)

ATDI Coverage & EMF contours, around 5G base stations/

Dr. Haim Mazar (Madjar) ITU-D, R and T interesectoral activities on E/MF




Session 3: What are the implications of 5G of EMF limits for 5G Network Rollout?

ATDI's calculation method to present precisely exposure and predicting field strength levels, relative to national limits

Exposure distance assuming free-space, main beam

- $p_{\rm t}$: transmitter power (watts),
- g_t : transmitter antenna gain (numeric)
- *eirp*: equivalent isotropically radiated power (watts)
- *d*: distance from transmitter (meter)
- *e*: electric field-strength (FS) Volt/meter (V/M)

$$e = \frac{\sqrt{30\,eirp}}{d}$$
 and $d = \frac{\sqrt{30\,eirp}}{e}$

At 900 MHz, max downlink power 100 W, ant. gain (including losses) 17 dBi, *eirp* is 5 Kw. ICNIRP 1998 general-public reference-level is 41 V/m. Therefore, the exposure distance of

$$d = \frac{\sqrt{30\,eirp}}{e} = \frac{\sqrt{30 \times 5,000}}{41} = 9.5 \text{ m.}$$

900 MHz, ICNIRP generalpublic reference-level 41 V/m & occupational 3f^{1/2} (MHz)= 90 V/M. See scales

considering also wall attenuation Tx 30 meters above roof; Rx mobile 1.5m above ground

Mobile Composite Coverage

41 V/m (General Public)

90 V/m (Ocuppational)

Monaco

Buildings impacted in 3D view

ATDI

1 V/m


5 V/m

10 V/m

20 V/m

1.5m above ground Environmental levels: 3D cellular contours, showing buildings impacted; preliminary draft new Report ITU-R SM.[EMF-MON] 'EMF measurements to assess human exposure' Fig. 6

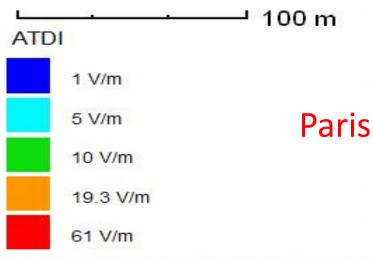
Environmental levels: 2 D satellite view of cellular, Report ITU-R SM.[EMF-MON] Fig. 7

x: 616447.6 - y: 4815136....

Transparent buildings
 Special buildings only
 Show roofs
 Map on roofs
 Display dutter
 Display FS on facades
 Display FS in buildings
 Show 3D antenna
 Show FS in V/m

Threshold 30

....


Calculating safety-zones using elevation ant. pattern, ant. tilt 0 degrees Even the azimuth ant. is analysed; typically in 3 sectors 5G, an azimuth overlap: 6dB attenuation in ±60° & 3dB around ±45° around mainbeam

MW link exposure map

Safety zones in 2D view with ITU-R F.699 antennas

Mairie de Puteeux

a Poste

At 10 GHz, ICNIRP 1998 general-public reference-level is 61 V/m. See scale also Square Gallieni ICNIRP 19.3 V/M (61 divided by sqrt 10) Max power 2 W, ant. gain 43 dBi, eirp 40 kW; free-space loss exposure 18 m. for 61 V/m & 57 m. for 19.3 V/M Maréchal Leclero Paris arrefour City a Poste Sony Europ

2D exposure-distances using ITU-R F.699 ant. patterns. ITU-R SM.[EMF-MON] Fig. 13 Buildings impacted by two PtP directive links 40 kW eirp

Related author's presentations on EMF

- <u>A Global Survey and Comparison of Different Regulatory Approaches to Non-Ionizing RADHAZ and Spurious Emissions</u>, IEEE TelAviv, <u>COMCAS</u>, November 2009. Hyperlink to the <u>slides presentation</u>; 9 November 2009
- <u>A Comparison Between European and North American Wireless Regulations</u>, presentation at the 'Technical Symposium at ITU Telecom World 2011' <u>www.itu.int/worl2011 on 27 October 2011</u>; hyperlink to the <u>slides presentation</u>, 27 October 2011
- <u>Technical limits of Human Exposure to RF from Cellular Base Stations and Handsets</u>, Jerusalem, 11 April 2013. Professional
 presentation of the Ministry of Communications to the experts of Ministry of Environmental Protection, human-exposure
 monitoring laboratories and cellular operators
- <u>Technical limits of Human Exposure to RF from Broadcasting Emitters, Cellular Base Stations and Handsets</u>, at '<u>Holon institute</u> of technology', 30 January 2014
- <u>Smart Cities RF Human Exposure Ministries of Comms Energy.pdf</u>; presentation at intra-ministerial commission, on 21 January 2015
- January 2016, presentations in Singapore, Beijing, Chengdu and Shenzhen
- January2016 Human Hazards Mazar SRTC in Chinese.pdf
- Human Hazards_Mazar_AsiaPacific_BKK_25April16.pdf
- EMC Europe2016 Wroclaw Sep 2016 Mazar 20April16 EMF.pdf

U may visit my website <u>http://mazar.atwebpages.com/</u>, Dr. Haim Mazar (Madjar) <u>h.mazar@atdi.com</u>

Questions to be asked: how exactly to calculate exposure-contours by inserting <u>additional losses</u> derived from *wall penetration, non free-space* propagation model, & *antenna patterns,* mainly in *elevation*?