

# **Efficient Deep Learning in Communications**

Dr. Wojciech Samek

Fraunhofer HHI, Machine Learning Group



## **Today's AI Systems**

AlphaGo beats Go human champ



Computer out-plays humans in "doom"



Deep Net outperforms humans in image classification



Dermatologist-level classification of skin cancer with Deep Nets



Revolutionizing Radiology with Deep Learning



DeepStack beats professional poker players



Deep Net beats human at recognizing traffic signs





## **Today's AI Systems**

#### Huge volumes of data



 Millions of labeled examples available

#### Computing power



- highly parallel processing
- large power consumption (600 Watts per GPU card)

#### Powerful models



- huge models (up to 137 billion parameters and 1001 layers)
- architectures adapted to images, speech, text ...

#### Communications settings are often different.



## **ML** in Communications

**Satellite Communications** 



**Autonomous driving** 



**Smart Data** 



**Smartphones** 



**Internet of Things** 



**5G Networks** 



Many additional requirements: Small size, efficient execution, low energy consumption ...



#### **ML** in Communications

Distributed setting

Large nonstationarity

Restricted ressources

Communications costs

Interoperability

Security & privacy

Interpretability

**Trustworthiness** 

. . .

# We need ML techniques which are adapted to communications

But it's not only the algorithms, also:

- protocols
- data formats
- frameworks
- mechanisms
- ..





DNN with Millions of weight parameters

- large size
- energy-hungry training & inference
- floating point operations

Many recent work on compressing neural networks by weight quantization.



$$\begin{bmatrix} w_{1,1} & w_{1,2} & w_{1,3} & \cdots & w_{1,n} \\ w_{2,1} & w_{2,2} & w_{2,3} & \cdots & w_{2,n} \\ w_{3,1} & w_{3,2} & w_{3,3} & \cdots & w_{3,n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ w_{n,1} & w_{n,2} & w_{n,3} & \cdots & w_{n,n} \end{bmatrix} \xrightarrow{\text{quantization}} \begin{bmatrix} 0 & 4 & 0 & 0 & 4 & 0 & 4 & 0 & 0 \\ 0 & 2 & 4 & 0 & 0 & 4 & 2 & 0 & 2 & 0 \\ 2 & 2 & 0 & 0 & 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 4 & 4 & 0 & 0 & 0 & 4 & 0 & 4 \\ 4 & 0 & 0 & 0 & 2 & 0 & 0 & 4 & 2 & 2 \end{bmatrix}$$

compressed sparse row format

- reduces storage
- fast multiplications

$$W:[4,4,4,2,4,4,2,2,2,2,4,4,4,4,4,4,2,4,2,2]$$

$$col I:[1, 5, 7, 1, 2, 5, 6, 8, 0, 1, 7, 2, 3, 7, 9, 0, 4, 7, 8, 9]$$

can we do better?



RD-theory based weight quantization does not necessarily lead to sparse matrices.

$$\begin{pmatrix}
0 & 4 & 0 & 0 & 0 & 4 & 0 & 4 & 0 & 0 \\
0 & 2 & 4 & 0 & 0 & 4 & 2 & 0 & 2 & 0 \\
2 & 2 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 \\
0 & 0 & 4 & 4 & 0 & 0 & 0 & 4 & 0 & 4 \\
4 & 0 & 0 & 0 & 2 & 0 & 0 & 4 & 2 & 2
\end{pmatrix}$$

Weight sharing property: Subsets of connections share the same weight value

$$z_i^l = \sum_j^M w_{ij}^l a_j^{l-1}, \quad \xrightarrow{\text{rewriting trick}} \quad z_i^l = \sum_k w_k^l \sum_{j \in J_{ik}^l} a_j^{l-1},$$



$$\begin{pmatrix} 0 & 4 & 0 & 0 & 0 & 4 & 0 & 4 & 0 & 0 \\ 0 & 2 & 4 & 0 & 0 & 4 & 2 & 0 & 2 & 0 \\ 2 & 2 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 4 & 4 & 0 & 0 & 0 & 4 & 0 & 4 \\ 4 & 0 & 0 & 0 & 2 & 0 & 0 & 4 & 2 & 2 \end{pmatrix}$$

more efficient format than CSR

$$colI:[1,5,7,2,5,1,6,8,0,1,7,2,3,7,9,0,7,4,8,9]$$



iphone8 25 kJ

#### **VGG-16**

size: 553 MB, acc: 68.73 %, ops: 30940 M, energy: 71 mJ

## State-of-the-art compression + sparse format

size: 17.8 MB, acc: 68.83 %, ops: 10081 M, energy: 22 mJ

## State-of-the-art compression + WS format

size: 12.8 MB, acc: 68.83 %, ops: 7225 M, energy: 16 mJ





verify system

legal aspects

understand weaknesses

learn new strategies





Theoretical interpretation: (Deep) Taylor decomposition of neural network





#### Simple LRP rule (Bach et al. 2015)

$$R_i^{(l)} = \sum_j \frac{x_i \cdot w_{ij}}{\sum_{i'} x_{i'} \cdot w_{i'j}} R_j^{(l+1)} \qquad \text{Every neuron gets its "share" of the redistributed relevance}$$



what speaks for / against classification as "3"



what speaks for / against classification as "9"





#### Test error for various classes:

|         | aeroplane | bicycle     | bird   | boat        | bottle | bus                    | car       |
|---------|-----------|-------------|--------|-------------|--------|------------------------|-----------|
| Fisher  | 79.08%    | 66.44%      | 45.90% | 70.88%      | 27.64% | 69.67%                 | 80.96%    |
| DeepNet | 88.08%    | 79.69%      | 80.77% | 77.20%      | 35.48% | 72.71%                 | 86.30%    |
|         | cat       | chair       | cow    | diningtable | dog    | horse                  | motorbike |
| Fisher  | 59.92%    | 51.92%      | 47.60% | 58.06%      | 42.28% | 80.45%                 | 69.34%    |
| DeepNet | 81.10%    | 51.04%      | 61.10% | 64.62%      | 76.17% | 81.60%                 | 79.33%    |
|         | person    | pottedplant | sheep  | sofa        | train  | tvm <del>oni</del> tor | mAP       |
| Fisher  | 85.10%    | 28.62%      | 49.58% | 49.31%      | 82.71% | 54.33%                 | 59.99%    |
| DeepNet | 92.43%    | 49.99%      | 74.04% | 49.48%      | 87.07% | 67.08%                 | 72.12%    |







#### **Predictions**

25-32 years old

60+ years old







## Conclusion

Bringing ML to communications comes with <u>new</u> challenges

Al systems may behave differently than expected

Need for best practices & recommendations (protocols, formats, ...)



## Thank you for your attention

## **Questions**???

## All our papers available on:

http://iphome.hhi.de/samek

#### Acknowledgement

Simon Wiedemann (HHI) Klaus-Robert Müller (TUB) Grégoire Montavon (TUB) Sebastian Lapuschkin (HHI) Leila Arras (HHI)

. . .

