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Today’s AI Systems

AlphaGo beats Go 

human champ

Deep Net outperforms humans 

in image classification

Deep Net beats human at 

recognizing traffic signs

DeepStack beats

professional poker players

Computer out-plays 

humans in "doom"

Dermatologist-level classification

of skin cancer with Deep Nets

Revolutionizing Radiology 

with Deep Learning
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Huge volumes of data Computing power Powerful models

Today’s AI Systems

Communications settings are often different.

- Millions of labeled 

examples available

- huge models (up to 137 billion 

parameters and 1001 layers)

- architectures adapted to images, 

speech, text …

- highly parallel processing

- large power consumption 

(600 Watts per GPU card)
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Many additional requirements: Small size, efficient execution, low energy consumption …

Satellite Communications Autonomous driving

Smartphones Internet of Things 5G Networks

Smart Data

ML in Communications
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Distributed setting

Large nonstationarity

Restricted ressources

Communications costs

Interoperability

Security & privacy

Interpretability

Trustworthiness

…

ML in Communications

We need ML techniques which are 

adapted to communications

But it’s not only the algorithms, also:

- protocols

- data formats

- frameworks

- mechanisms

- …
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Problem 1: Restricted ressources

DNN with Millions of weight parameters

- large size

- energy-hungry training & inference

- floating point operations

Many recent work on compressing neural networks by weight quantization.
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Problem 1: Restricted resources

compressed sparse row format

- reduces storage 

- fast multiplications

can we do better ?

quantization

(rate-distortion

theory)
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Problem 1: Restricted resources

RD-theory based weight quantization does not necessarily lead to sparse matrices.

Weight sharing property: Subsets of connections share the same weight value

rewriting trick
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Problem 1: Restricted resources

more efficient format 

than CSR
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Problem 1: Restricted resources

VGG-16

size: 553 MB, acc: 68.73 %, ops: 30940 M, energy: 71 mJ 

Simple quantization (8 bit)

size: 138 MB, acc: 68.52 %, ops: 30940 M, energy: 68 mJ 

Sparse format

size: 773 (217) MB, acc: 68.52 %, ops: 29472 M, energy: 65 mJ 

iphone8 25 kJ

WS format

size: 247 (99) MB, acc: 68.52 %, ops: 16666 M, energy: 36 mJ 

State-of-the-art compression + sparse format

size: 17.8 MB, acc: 68.83 %, ops: 10081 M, energy: 22 mJ 

State-of-the-art compression + WS format

size: 12.8 MB, acc: 68.83 %, ops: 7225 M, energy: 16 mJ 
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Black

Box

Problem 2: Interpretability
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verify

system

understand

weaknesses

legal

aspects learn new 

strategies
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Theoretical interpretation: (Deep) Taylor decomposition of neural network

Black

Box

Problem 2: Interpretability
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Problem 2: Interpretability

Explanation

cat

rooster

dog

?
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what speaks for / against

classification as “3”

what speaks for / against

classification as “9”

Problem 2: Interpretability
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Problem 2: Interpretability
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Predictions

25-32 years old

60+ years old

Problem 2: Interpretability
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Problem 2: Interpretability
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Conclusion

Bringing ML to communications comes with new challenges

AI systems may behave differently than expected

Need for best practices & recommendations (protocols, formats, …)
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Thank you for your attention

Questions ???

All our papers available on:

http://iphome.hhi.de/samek
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