ITU-T FG-ML5G

Network Operations Intelligence

Evolving network operations by the power of intelligence

2018. 01. 29 | KT Infra R&D Laboratory

1	Future of Network Operations
2	Evolution with Intelligence
3	KT's Experience
4	Considerations

⁰¹ Current: An Operations Team for Each Domain

Intra-domain monitoring \rightarrow Cross-domain analysis \rightarrow Fault recovery

⁰² Phase I: Intra-domain Integration

Intra-domain integration to achieve end-to-end management

⁰³ Phase II: Cross-domain Management

Cross domain integration to provide single view

⁰⁴ Future: Human-like AI Operator & Robot Engineer

Fault detection & analysis by human-like operation control master \rightarrow Dispatching Robot engineer

1	Future of Network Operations
2	Evolution with Intelligence
3	KT's Experience
4	Considerations

⁰⁵ Current → Phase I

Gathering AI data from big data platform \rightarrow Event correlation \rightarrow Intelligent fault detection and localization

⁰⁶ Phase I \rightarrow Phase II

Network auto-configuration and auto-provisioning with Intelligent analysis and fault prediction

⁰⁷ Phase II → Future

Reinforcement Learning-based operation \rightarrow Fault preventive service \rightarrow Auto-investment based on forecasting

1	Future of Network Operations
2	Evolution with Intelligence
3	KT's Experience
4	Considerations

⁰⁸ KT's Experience: Field Dispatch Classification

Decision making for field dispatch, based on CNN-based classification results using trouble tickets

⁰⁹ KT's Experience: Wireless Core Network Fault Prediction

- Using tapped signal data on wireless core network, train LSTM-based prediction model
- Predict future abnormal traffic based on current trend

¹⁰ KT's Experience: AI Common Platform

- Field engineers maintaining private tables (mostly as excel files) for easy reference
- KT's AI common platform helps them to make their own AI applications using the excel files as training data

¹¹ KT's Experience: Guidelines and Standards Required

- Unnecessary energy and time consumed for preliminary tasks
- Not sure how dependable the final ML application is

Urgent Standardization Items

- Categorization of ML technologies for network domains and phases
 - Different MLs for different domains (Wireless, Wired, Core, Access)
 - Different MLs for different phases (Design-Deploy-Provisioning-Management-Services)
- Requirements for Training Data
 - Minimum size of data set
 - Characteristics of distribution
 - Fairness of the data
- Cautions and limitations
 - Criteria for the level of accuracy suitable for services
- Guidelines for data normalization
 - We have special types of files -- syslog, alarms, trouble tickets, etc
- Guidelines for Hyper Parameters
 - Desirable number of nodes, layers, training epochs, etc

1	Future of Network Operations
2	Evolution with Intelligence
3	KT's Experience
4	Considerations

¹² Human-less vs. Assistant-AI

Prefer AI-assisted operations system than human-less control room

¹³ Human-less vs. Assistant-AI

Comfortable with human engineer with helping robot, than robot only

