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Ingredients of Machine learning

Data acquisition, = Choosing ML algorithm

Correct problem

statement data processing and Data partition e et

cleaning «  neural network

deep learning
What exactly is being «  random forest

predicted « SVMetc.
/ optimized

Test data Training data
(marked) (marked)

Model estimation / Integration of the results to
correction company’s business processes
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Goal: find clients In risk areas

Human - expert

intellect

spirit

linear
hypothesis

human resources needed

low forecast accuracy

result depends on specific expert
static model
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Artificial Intelligent
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data for 3 years model

no human resources required

forecast accuracy is much higher

dynamic model, can be adapted to business’s
changes




Forecasting the outflow of the client base

Subscriber lifetime

Voice and broadband traffic
consumption

Dynamics of payments

Dynamics of account
receivable

Quantity/duration of
contacts with technical
support and complaints
solving

Presence of fails of
broadband sessions

etc.
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Subscribers Charges
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Voice/Broadband Accounts

Data model
Random Forest

Landline, Internet,

DB contains data for 2
years with subscribers|
outflow and their
patterns of behavior

traffic receivable
TechSuBbort Fails of
contacts sessions

Outflow tendency

65%
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Implementation
using code

fresh data with
subscribers’
activity (monthly)




Technological landscape
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Key project indicators IQ | Q.o
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Impact on revenue

Sample size?! State of contact % gone from sample

Impact on operational efficiency

Handmade
analytics

Haven’t made a call 9.1%

Have made a call /

20 566 inclined
(47%) 33743

6.6% (-2,5 nn)

(53%)

I have made a call ]l haven't made a call
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Siberia 1! South Volga Far East

I Efficiency? I Number of call-center employees

1 Period is July 2017 - February 2018
2 Efficiency.% - percentage of reaching the client that is inclined to outflow to the sample to total quantity of made contacts




Working procedure of Technology forecasting IQ | Q.o
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Science Patents SDN,
publications Example: Software, Openflow,
Hardware Software-defined
network
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Machine Learning = Deep Learning + Support Vector Machine
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Technologies of Machine learning
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ABSTRACT

In[§lllcomplex protocol interactions that require forging network
packets are handled on the controller side. While this ensures flexi-
bility, both performance and scalability are impacted, introducing
serious concerns about the applicability SN at scale. To improve
on these issues, without infringing tHEISBN principles of control
and data planes separation, we propose an APl for programming
the generation of packets ifIBBIN switches. Our InSP AP allows a
programmer to define in-switch packet generation operations, which
include the specification of triggering conditions, packet's content
and forwarding actions. To validate our design, we implemented
the InSP APlin an software switch and in a controller,
requiring only minor modifications. Finally, we demonstrate that
the application of the InSP AP, for the implementation of a typi-
cal ARP-handling use case, is beneficial for the scalability of both
switches and controller.

CCS Concepts

«Networks B Programming interfaces; Bridges and switches;
Programmable networks; Packet-switching networks; Network
performance evaluation; Network manageability;

Keywords

Software-defined Metworking; Programming abstractions; Open-
Flow
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1. INTRODUCTION

The last few years have seen the establishment of SDN as a con-
crete approach to build better networks and to introduce innovation
in an ossified field [24], with a growing number of deployments
certifying this success [15]. Nonetheless, despite the good behind
the intuitions that led to the design of the SDN principles [9], the
SDN architecture and technologies are iteratively being updated to
address the issues that are highlighted by the production deploy-
ments [28]. On the one hand, the current generation offorwarding
devices, L.e., switches, is not ready to support the flexible switch's
programming model introduced with SDN. Limited forwarding table

put in control messages handling [25], and slow synchronization
between data and control planes [21] are just some of the issues
that are being addressed on the switch side. Likewise, a number of
problems are being addressed on the controller side, i.e., where the
network's control plane is implemented. Controller scalability [8],
reliability [3], as well as fundamental questions about controller
placement [12,13], network policy consistency [34] and network
view consistency [20] can be mentioned as relevant examples of
work dealing with the SDN's control plane implementation.
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HIERARCHICAL CLASTERING

Artificial intelligence
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Machine learning

|
I }

Deep learning

Decision Tree
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