

Dmitry CHASOVSKOY
Head of project department, Rostelecom (IQMEN)

Experience on Big Data processing

Saint Petersburg 2018

Ingredients of Machine learning

Forecasting the outflow of the client base

Technological landscape

Key project indicators

Impact on revenue

Trends selection procedure

Technologies of Machine learning

Ростелеком

HIGHLIGHTING OF ENTITIES

ABSTRACT

In SDN, complex protocol interactions that require forging network packets are handled on the controller side. While this ensures flexi-
bility, both performance and scalability are impacted, introducing bility, both performance and scalability are impacted, introducing
serious concerns about the applicability of SDN at scale. To improve on these issues, without infringing the SDN principles of control and data planes separation, we propose an API for programming the generation of packets in SDN switches. Our InSP API allows a programmer to define in-switch packet generation operations, which include the specification of triggering conditions, packet's conten and forwarding actions. To validate our design, we implemented requiring only minor modifications. Finally, we demonstrate that the application of the InSP API, for the implementation of a typical ARP-handling use case, is beneficial for the scalability of both switches and controller

CCS Concepts

Networks ® Programming interfaces; Bridges and switches; Programmable networks; Packet-switching networks; Network performance evaluation; Network manageability

Keywords

Software-defined Networking; Programming abstractions; OpenFlow

1. INTRODUCTION

The last few years have seen the establishment of SDN as a concrete approach to build better networks and to introduce innovation in an ossified field [24], with a growing number of deployments the intuitions that led to the design of the SDN principles [9], the SDN architecture and technologies are iteratively being updated to address the issues that are highlighted by the production deployments [28]. On the one hand, the current generation offorwarding devices, i.e., switches, is not ready to support the flexible switch's programming model introduced with SDN. Limited forwarding table
put in control messages handling [25], and slow synchronization between data and control planes [21] are just some of the issues between data and control planes [21] are just some of the issues
that are being addressed on the switch side. Likewise, a number of problems are being addressed on the controller side, i.e., where the network's control plane is implemented. Controller scalability [8], reliability [3], as well as fundamental questions about controller placement [12,13], network policy consistency [34] and network view consistency [20] can be mentioned as relevant examples of work dealing with the SDN's control plane implementation.

SOSR'16, March 14-15, 2016, Santa Clara, CA, USA

- 201' ${ }^{\text {A }}$ ACM. ISBN 978- - -4503 -4211-7/16/03 ... 15.00

DO: hittp://dx.doi.org/10.1145/2890955.2 290962
[keywords] [key objects] [soursel [datel [location]

NORMALIZATION OF DATA

- UCLA
- Univ. of California, LA
- UCLA, Los Angeles, CA
- University of California at Los Angeles

HIERARCHICAL CLASTERING

