

Quantum communication in Russia: status and perspective

Vladimir I. Egorov, PhD

Assistant professor, ITMO University, Department of Photonics and Optical Information Technologies

Senior researcher, Quanttelecom LLC viegorov@itmo.ru

Outline

- Quantum communication as a strategic technological priority
- Government programs and investment
- Major QKD research groups in Russia
- Development directions and status
- QKD standardization policy
- Our view of quantum-secure future

"Point-to-point QKD technology in Russia is characterized by a high degree of completeness (with a notable exception of certification procedures) and has been included into National Technology Initiative as well as industrial investment programs".

3 COHOMIKA Data Economy Russia 2024

Data Economy government program (2019-2024)

Contuniation of National Technology Initiative (NTI) program (launched in 2014), that focused on forming hi-tech markets.

See https://asi.ru/eng/nti/

Aims:

- 1. Adapting laws, regualations and standards
- 2. Research and development
- 3. Education
- 4. Information infrastructure
- 5. Information security (for people and state)

Program amount: \$7.5 bil. (government funding), plus comparable amount of industrial investment. \$0.7 bil. for Quantum Technologies

Main instruments:

- .. Creation of Leading Research Centers
- 2. Co-funding of R&D supported by industry
- 3. Technological start-up funding
- 4. Regional project support
- . Industry digital platforms support

3 COHOMIKA Data Economy Russia 2024

Data Economy: "Quantum technologies". Main directions (2019-2024)

Quantum computing and simulation:

Subtechnologies:

- 1. Superconducting
- 2. Neutral atoms
- 3. Ion traps
- 4. Photonic circuits
- 5. Polariton condensers

R&D directions:

- Quantum computers and simulators
- 2. Quantum error correction codes
- 3. Quantum algorithms
- 4. Cloud platform for quantum computing

Quantum communication:

- 1. Point-to-point QKD
- 2. CV QKD
- 3. Quantum networking
- 4. Quantum and classical channel multiplexing
- 5. Trusted repeater network
- 6. QKD on-chip
- 7. MDI QKD
- 8. Quantum memory
- 9. Quantum repeaters
- 10. Free-space QKD
- 11. Satellite QKD
- 12. QKD for IoT
- 13. Single photon detectors
- 14. Quantum IoT

Quantum sensing and metrology:

- 1. Quantum clock
- 2. Giroscopes
- 3. Accelerometers and gravitometers
- 4. Temperature, electric and magnetic field sensors
- 5. Spintronic sensors
- 6. Plasmonic 2D materials
- 7. Solid state photomultipliers
- 3. Electroinic nose

QKD in Russia as an industry-ready technology

QKD research centers

Kazan Quantum Center

QKD manufacturers

Network device manufacturers

Telecom operators and IT

International companies

Quantum network testbeds in Russia

QKD research groups: ITMO University (St. Petersburg)

Dr. Artur Gleim, head of quantum information lab, ITMO University. Director general, Quanttelecom LLC.

Main development directions:

Subcarrier wave QKD

CV QKD

Quantum hacking

QKD protocols

Single photon detectors

Quantum RNGs

SDN QKD networking

Quantum networking

Subcarrier wave QKD scheme

QKD research groups: ITMO University (St. Petersburg)

ITU Workshop on Quantum Information Technology for Networks Field-test of intercity QKD link (160 km), 2019 Shanghai, China, 5-7 June 2019

Node 1: Kazan Quantum Center, KRNTU-KAI, Kazan

Node 2: Tattelecom PJSC building, Chistopol town

Quantum channel length: 160 km (45 dB)

- 1. Gleim, A. V., et al. Optics express 24.3 (2016): 2619-2633.
- 2. Kozubov, Anton, Andrei Gaidash, and George Miroshnichenko. arXiv preprint arXiv:1903.04371 (2019).

Year: 2019 (to be published)

QKD protocol: phase subcarrier wave [1,2]

Wavelength: 1550.12 nm Mean photon mumber: 0.2 Clock frequency: 100 MHz

Bob loss: 6,4 dB

Quantum channel loss: 45 dB

Detector: SNSPD (Scontel, Russia)

Quantum efficency: 50%

Dark counts: 0.5 Hz

QKD research groups: **ITU Workshop on Quantum Information Technology for Networks** Shanghai, China, 5-7 June 2019 **Russian quantum center (Moscow)**

Dr. Yury Kurochkin, leader of quantum comunication group, RQC. Technical director, Qrate LLC.

Main development directions:

Fiber and freespace QKD

Error correction algorithms

Quantum hacking

QKD protocols

Single photon detectors

Quantum RNGs

Quantum-secured blockchain

Quantum networking

QKD research groups: Russian quantum center (Moscow)

Russian Quantum Center

2015 – R&D, experimental demonstration of quantum channel electronic subsystem

2015 – QKD project funded by Ministry of Education and science

2016 – Developed software platform for quantum key processing

2017 – Launched a metropolitan area QKD network in Moscow connecting Gazprombank offices

2017 – Developed high-speed (300 MHz) QKD operation electronics

2017 – Launched a quantum link between Sberbank offices

2017 – Gazprombank infrastructure was used to test quantum key distribution on a blockchain in real-life conditions

2018 – Started serial production of QKD systems

QKD research groups: Moscow State University

Prof. Sergei Kulik,
head of quantum optics
lab, NTI center for
quantum technology,
Moscow State University

Main development directions:

Fiber and freespace QKD Key processing algorithms

Single photon sources

QKD protocols

Single photon detectors

Quantum RNGs

Quantum tomography

Quantum networking

Source: quantum.msu.ru

Quantum hacking research

- ✓ ITMO University QKD system was analyzed for possible loopholes by Quantum Hacking group (then at University of Waterloo, Canada). Report publication pending.
- Latest results:
 - Laser damage attack against optical attenuators in quantum key distribution // arXiv:1905.10795 [quant-ph]
 - Controlling single-photon detector ID210 with bright light // arXiv:1905.09380 [quant-ph]
- Russian Quantum Center is also actively involved in quantum hacking research.

ITU Workshop on Quantum Information Technology for Netwo Quantum communication technology groups:

Shanghai, China, 5-7 June 2019

Zavoisky Physical-Technical Institute (Kazan)

Main development directions:

Free-space QKD

Single photon sources

High-dimensional quantum states

Angular momentum photon encoding

Prof. A.A. Kalachev, director of Kazan Zavoisky Physical-Technical Institute of RAS

Automatized precise telescopic systems for free-space QKD

ITU Workshop on Quantum Information Technology for Netwo Quantum communication technology groups: Shanghai, China, 5-7 June 2019 **Kazan Quantum Center (Kazan)**

Prof. S.A. Moiseev, director of Kazan Quantum Center, KRNTU-KAI

Kazan Quantum Center

Main development directions:

Optical quantum memory

Quantum repeaters

Fiber optical QKD

Quantum networking

QKD protocols

Quantum sources

Experimental setup of ROSE quantum memory 15

QKD standartization in Russia

Technical Committee for standartization "Cryptography and security mechanisms"

and others...

Encryption methods

Blockchain technology

Message authentication

Digital signatures

https://tc26.ru/en/

TC 194

Cyber-physical systems

Key Technologies

«Internet of Things»

«Smart production»

PBK

<u>№</u>ГАЗПРОМ

HEDIL

QKD applictions

Internet of things

Big data

and others...

https://tc194.ru/en/

User classes

Groud network nodes
Satellites

Unmanned vehicles
Drones and robots
Industrial internet

Application areas

Robotics Smart transport

Secure satellite communication
Distributed quantum calculations

New markets

Quantum communication devices

Quantum network operators

Quantum computing

Security services

QKD for securing cyber-physical systems

Robots as reliable mobile trusted repeaters for QKD networks

Project goals

- Short-term: using quantum keys for securing control and data planes of mobile robots
- Mid-term: developing mobile QKD stations (Alice module on robot)
- Long-term: developing metropolitan area QKD networks with cyber-physical and stationary nodes

Photos of the implementation: SCW QKD system module, the gamepad issuing movement commands, the mobile robot with a camera operating through a QKD-protected channel.

QKD in space: roadmap

"Satellite QKD system with 1-10 kbit/s quantum and 1-10 Gb/s optical channel"

1-10 Gb/s optical channel	
Year	Activity
2019	Ground station prepared
2020	Satellite QKD prototype developed
2021	QKD module adapted for satellite
2022	Field test on the ground
2023	First satellite launched
2024+	Development of orbital group

Source: "Digital Economy: Quantum technologies" roadmap, 2019

- All main QKD groups in Russia are involved into free-space QKD research
- ▼ These activities are to be included into several Roskosmos development programs and supported by Union state of Russia and Belarus program "Complex-SG" (2019-2023).

QKD: new international security opportunities

We are ready to work with our international partners on creating **regional and global quantum-secure infrastructures** involving backbone and metropolitan fiber QKD networks and satellite QKD channels.

Goal: transcontinental QKD line in Russia to unify Chinese and EU quantum infrastructures

Conclusion

- Quantum technologies have become national research and application priorities for the next five years in Russia.
- Quantum key distribution technology in Russia is ready for industrial integration.
- Proper QKD certification and standardization procedures are in course of development both on national and international level.
- These developments will become a foundation for nation-wide QKD lines in Russia, acting as a unifying link between Chinese and European quantum infrastructures.

Thank you for you attention!

viegorov@itmo.ru