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5G Technology

" The well known pillar
technologies for 5G

O Enhanced Mobile Broadband
(eMBB)

0 Massive M2M/loT Communication
(MMTC)

O Ultra Reliable and Low Latency
Communication (URLLC)

* Mission critical services

" Field trials are coming lm

" Machine learning emerges 36 4G 56
= Al for 5G and Beyond
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Reality in 5G Technology

= Technologyfor eMBB is = uRLLCis rather young and

mature in 5G (R15) only one use case in R15
O C-RAN, massive MIMO, ... O Itis actuallytechnological
0 NOMA attracts extensive paradigmshift, butnot
research butis not used W|d.ely.l.mderstood
= mMTC is getting mature, O Re"ab":cty suggests f
frer vears’ efforts success ul completiono
d Yy intelligent control and
RECENT PROGRESS IN MACHINE-TO-MACHINE IEEE Comm. Mag management miSSiOnS, not
COMMUNICATIONS April 2011 just successful packet
o delivery
Towa_rd Ublqmtou_s O A packet correctlyreceived
Massive Accesses In 3GPP but exceedinglatency

Machine-to-Machine Communications requirementis useless
O Primary M2M, not H2H

Shao-Yu Lien and Kwang-Cheng Chen, NTU
Yonghua Lin, IBM Research Division
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Human Intelligence

Are you still making phone calls?
Al, Al, and Al; ML, ML, and ML

RISE OF MACHINES
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From Driving Assistance to Autonomous Driving

Green car at 50 MPH
implies 273 feet
safe distance
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From Driving Assistance to Autonomous Driving

Q1: Do we need networking for a
single autonomous vehicle as good
as human driving?

Q2: Do we need networking for a

single autonomous vehicle more
reliable and safe than human driving?

Q3: Do we need networking for
massive operation of AVs?

ITU ML5G Workshop, Geneva, June 17, 2019 KC Chen, USF EE 6



Department of Electrical Engineering

An lllustration by Autonomous Vehicles on
Manhattan Streets [IEEE Globecom 2018]

WIRELESS COMMUNICATIONS
MEETS ARTIFICIAL INTELLIGENCE
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“Altofidmous Vehicles and Mobile
Riobots
= Autonomous vehicles are *

increasingly present in modern o
society

= The development of AVs is the key
of the new transportation system

* The technologies of Autonomous Vehicle
itself are developed well

* But we assume a lot of AVs on the road
* Communicationsamong AVs will be crucial
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Technological Requirements

Machine Learning should be

At this moment

applied with not only AVs, also with

Machine ..
Learning the communication system
Machine
Lear_' What we need
Agent Machine Machine
Learning Learning Machine
Learning
Agent Agent
Machine
Most of assumed AV L&h
. : o ent i
communications are just utilizing Ag Mach!ne
the communication system Learning
Agent Agent

=  Radio resource for bandwidth or
latency?
=  What to communication?

= How and when to communicate?
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Deeper Technological Thoughts

" |f Al Agents (autonomous vehicles, robots, etc.) in
massive scale, will be around everywhere in our
daily life, their interactions would be the most

critical issue in future digital society.

" The role of (wireless) networking and
communication for Al/ML is overlooked in
literature, we know almost NOTHING from this

aspect.

0 We assume M2M communication identical to H2H
communication. Is it right?
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A T6y Mddel for AVs over Manhattan
Streets
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Reinforcement Learning

* The agentimplementsa mapping from states to
probabilities of selecting each possible action

" This mappingis called the agent's policy and is denoted m,
where i (als) is the probabilitythata, = aifs, = s

* The agent's goal is to maximize the total amount of
reward it receives over the long run
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Value Function

Value Function

" Functionsof states (or of state-action pairs) that estimate how good it
is for the agent to bein a given state (or how goodit is to perform a
given action in a given state)

= A policy, 7, is a mappingfrom each state, s € §, and action,a € A(s),
to the probability m(a|s) of taking action a when in state s

= Thevalue of a state s undera policy T, denoted v (s), is the expected
return when startingin s and following wthereafter

Uz (8) = EplGilsk = 5] = Ex[X5-0 ¥ Rivas1|Sk = S|

E,[ - ] denote the expected value of a random variable given that the agent follows policy
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Q-learning

* When state estimationis not perfectly available, using belief-
actionin RL, Q-learning.

» Underthe environmentchanging, Q-learningis updating g-
function Q(sy, ai) with g-function Q (s; 41, ax) at next state

" «aislearningstep, whichis related to learningspeed

T Q(Sk, up)
i
Q(sp,ar) « (1 —a)Q(sy,ap) + a[r, ., +ymax, Q(s,,1, a)] ‘
T 9k T 2 .
Qs ai) « Qs ) + alrie 4y + ymax, Q(spy1,@ — Q(s, ay)] QWi left) | Q(Sy right)

' oG
What we need to consider Q(Sk,down)

e The length of planning horizon
* The reward structure
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Manhattan Street Model

= Each vehicle has different source-destination relations but
going through the same street region without knowing
each others’ information

* Public reference (i.e. map) is available to all vehicles
O q
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Manhattan Street Demo

e Manhattan Model Street
(M=4, N=6, b=5)

* 10 carscomingintothe
street

* Safety and reliability is top
priority over time to travel
(performance)

ITU ML5G Workshop, Geneva, June 17,2019 KC Chen, USF EE
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Without Communication

= Attime k, the agent recognizes other vehicle
and generates reward map R; j

Rits " Fork+d (d=1,..,D,D is the depth of
horizon) will be the expected reward map
Rk+3 Rk
+d

AN

Ri,k+d = [f'Sk+d ]

R; k:k+p = {Rik> Ri k+1) -+» Rx+p}

The agent makes decision based on R; y.x+p
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Without Communication

= Attime k, the agent recognizes other vehicle

and generates reward map R;
‘ " Fork+d (d=1,..,D,D is the depth of
_ horizon) will be the expected reward ma
Riys Ricra Rivs Rz R4t R‘ ) P P
k+d
Rk+1 Rk+2 Rk+3 Rk+4
Ry Rik+a = [Tsppql

R; k:k+p = {Rik> Ri k+1) -+» Rx+p}

The agent makes decision based on R; x.x+p
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Expected Rewards

" The expected reward for each position

e A car calculate the expected reward with
each position (state sj) with the probability p,

Rk+5 Rk+4 ﬁk+3 §k+2 Rk+1

Rk+1 Rk+2 Rk+3 Rk+4

Ricss
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Ildeal V2V Communication

e Manhattan Model Street
(M=4, N=6, b=5)

e 20 carscomingintothe
street

* Communicationrange r=3

e No Connection
e Connectedwith other cars

ITU ML5G Workshop, Geneva, June 17, 2019 KC Chen, USF EE
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Ideal V2V Communication

=  Assuming cars can communicate with each other within the communication range r
®= |n the simple scenario of V2V, cars will have two kind of additional information

Illlll>

'- EEEN

!
v

<IIIIIIIIII

Within the communication range r, the yellow car will The yellow car will get the information about other
recognize the other cars’ positions cars’ movement (directions)
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Ideal V2V Communication

ITU ML5G Workshop, Geneva, June 17, 2019

The i-th AV probes other vehicles’ reward
maps attime k if any (j € [) AV within the

communication range, the i-th successfully
receives R; 1.x+p

* No matter receiving from other
AVs or not, the i —th AV broadcast
own reward map R; x.x4p

KC Chen, USF EE 22
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Ideal V212V Communication

 Manhattan Model Street (M=4,
N=6, b=5)

e 20 cars coming into the street

* Communication range r=3

® No Connection
® Connected with AP

AP: no connection

AP: connecting with cars
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Ideal V212V Communication

= The network infrastructure (NI)
relays the reward maps
Rap, k:k+p through APsm € M

ITU ML5G Workshop, Geneva, June 17, 2019 KC Chen, USF EE
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What is expected

Without communication, AV needsto predictthe other AV’s
moving from observation

ForV2V and V212V, within the communication range, AV’s can
swap the accurate information about othervehiclesmovement

\ ¢

* Average delays (from the driving time to the destination) can be
reduced by V2V and V2I2V communication

* V212V communication will improve the performance with smaller
range
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T MUTtTple Access With Limited
Resource

ALOHA with 1 channel

= |fthereare the packet to transmit, then transmit the packets
= There are collisionswhen the multi-accessoccurs

For Vehicle Communication

* If the channel is idle, the car broadcasts own reward map R ; within
communication range r

* If the channel is busy, the car waits for receiving other cars reward map
R,

 If the collisions occurs, that means the communication fails (no
communication mode)
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T MTRTple Access With Limited
Resource

e Manhattan Model Street
(M=4, N=6, b=5)

e 20 carscomingintothe
street

* Communicationrange
r=3

* No Connection
®* Connectedwith othercars

°* Collision occurs

ITU ML5G Workshop, Geneva, June 17, 2019 KC Chen, USF EE
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e Coyrmanication Enhances Multi-
Agent Systems:
New Frontier of Al Computing

* Manhattan Model Street (M=4, N=6,
b=5)

(a) MAS of RL with Ideal Wireless Commu- (b) Message Errors Degrade Performance of (c) Multiple Access Communication by rt-

Networked Al

ITU ML5G Workshop, Geneva, June 17,2019 KC Chen, USF EE
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Multiple Access of rt-ALOHA

Modification of slotted ALOHA is required to
support RL, named as real-time ALOHA (rt-ALOHA)

due to the nature of Al/ML
 Datais useless once passing the required networking
or communication latency = age of information
* When the channelis busy, the agent (i.e. AV) is ready to
receive immediately

= Whenthe channelis idle, the agent broadcasts the
message, and ready for receiving from othersimmediately
after transmission without any acknowledgement by the
receiving agent(s)

" Thereis no retransmission and thus backlogging
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Multiple Access of rt-ALOHA

=  For V2V and V212V communication with one operating frequency channel
= |fthe channel is occupied by the other agent, goes without communication

Ideal Communication D=5 Rt-ALOHA D =5

*  When V2V and V212V communication show the same performance in the ideal communication

* However the longer communication range does not help RLwith limited resource unit

ITU ML5G Workshop, Geneva, June 17, 2019 KC Chen, USF EE
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"NetworKing can alleviate the load of
Al (Learning) computing

= D means the depth of horizon to obtain the optimal policy in
reinforcement learning, while the computational complexity growing
exponentially with D

= Collaborative multi-agent systems would be more complicated.
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Lessons from Resource-Sharing MAS

= We observe the how the communication well assists RL,
that is, networked artificial intelligence
O Multiple access considerationsuggests small cells.

0 V212V communication better assists RL/Al than V2V
communication

O Appropriatecommunication alleviates computingload!

= Real-time (i.e. low-latency) multiple access is more
desirable in communication for Al
0 Age of informationexchanged among agentsis a critical factor.

O A correctlyreceived message of latency larger than required
valuein MLis uselessin Al.

O Fundamentallydifferentfrom H2H communication.
ITU ML5G Workshop, Geneva, June 17, 2019 KC Chen, USF EE 32
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Collaborative multi-agent systems [IEEE ICC 2019]

WIRELESS ROBOTIC
COMMUNICATIONS

ITU ML5G Workshop, Geneva, June 17, 2019 KC Chen, USF EE
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Networked Multi-Agent Systems

= Al/ML for communications emerges
as a new technological frontier.

= However, the impacts of wireless
communication on multiple Al
agents/robots are rarely known.

0 Multiple Al agents forms a multi-
agent system (MAS).

0 MAS of networking is a networked
MAS.

O Eisaku Ko and K.-C. Chen (IEEE GC’18)
showed wireless communication
enhances resource sharing MAS.

Robots (Agents) of Wireless Communication Capability
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Wireless Robotic Communications

=  One of the most critical

application scenarios is
collaborative robots working
together toward a common
mission in distributed
computing

0 Collaborative MAS

O Smart factory, service robots, etc.

= Goal: To comprehend the role of

wireless robotic communication

in collaborative MAS Toy Example: Floor plan of the cleaning area, where the area

) consists of 6760 free space grids and 1227 obstacle grids
0 Toy example: collaborative robots

to clean the floor as right hand
layout
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System Setup

= Each robot can move up, down, left, and right, in one unit of time. The
cleaning task of one tile/grid can be done within the same time unit. These
automated cleaning robots share the same mission (i.e. to clean the entire
floor) but each of them executes on own intelligence without any centralized
controller to manage their actions, as a collaborative MAS.

O No Public Reference: The size and shape of the target area is unknown to robots (i.e.
agents). In other words, the map of the target area is not available to agents.

O Localization: Each agent does not know its location at the beginning and must explore to
establish its private reference (i.e. own but incomplete map).

O Eachagentequips appropriate sensors and localization algorithm to tell each tile is to-be-
cleaned, being cleaned before, and a block. Each agent executes its own learning and
decision, which will be modeled as reinforcement learning [9].

O The time to complete the mission of cleaning the entire (or certain percentage of) floor is
used as the performance index of such Al system/MAS.

ITU ML5G Workshop, Geneva, June 17, 2019 KC Chen, USF EE 36
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Agent’s Private Reference
" Letg,,label the grid

" The state of agent u; is
d

o Obstacles: A fully occupied grid that is not able to let enOted by |tS |OcatI0n .

the robot traverse. Obstacle grids can be represented by T ne St ate Of ne Xt
Mobs- . )

o Unvisited (uncleaned): A grid that is covered with dirt |nSta _ e if At = stay
but/\t/llave not yet been cleaned. The set of unvisited grids g;.’k 41 if Ay = forward
1S X. 1 . 7 . L

e Visited (cleaned): A grid that has been cleaned and Y41 = \ 9 j,k—1 if At = back
doesn’t need to be visited again. The set of visited grids i if A, = le f t
. .. . .. . 9 1—1,k t
is M. (Note that unvisited grids and visited grids are i ) )
both free space, which is denoted by M f,ec.) L9j+1.k if Ay = right.

has not been cleaned

'RHThé[ ﬁevxéalg I§;ructu re
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Agent’s Reinforcement Learning

" Q-learning due to noisy sensing (with probability
P.) to form the belief

P{E(g) = R |g dirty} = P{fi(g) = Rﬂg cleaned} = p.
4)
P{R(g) = R™|g cleaned} = P{R(g) = R*|g dirty} =1 — p,

" e-greedy for exploration due to unknown floor
map

" TD-n appears to be a good version of RL but
actually suffers from lacking of public reference

(map).
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Single Agent’s RL Algorithm

1) Agent is randomly deployed at a free space grid which
is defined as coordinate (0,0) in its private reference

tt=0.

2) Perceives 4 surrounding grids. For all a in action set
A(bY), initialize Q(b%,a) = Qo if Q(b%, a) has not been
defined. )¢ is just an initial value that could be set at
any value. N

3) Calculate action-value function using Ry, in reward
map. The tilde over (b, a) indicates that it is not the
real action-value but the estimated one. Va € A(b?),

@(bzaa) A Q(bia )+a[Rt+1+argmaXQ( t+17

4) Let the optimal action be a* = argmax, Q(b},a).
Choose action A; following e-greedy policy, that is

4 a* with probability 1 — e
"7 a #a*

with probability TAG =T A(bl)| T

ITU ML5G Workshop, Geneva, June 17, 2019

a')=Q(b;, a)]

5) Operate action Ay, transits to state bt 41, and receive
reward R;;. Update the action-value function

Q(b},a) « Q(b}, a)+a[Ry41+arg nlax Q(bi—i—la a')—Q (b}, a)]

6) t < t+ 1. If all rewards on reward map is 2~, meaning
that all grids have been cleaned, terminate. Otherwise,
go back to step 2)

KC Chen, USF EE
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Robot Panning

= Purely relying on reinforcement learning is very ineffective to complete
a large-scale mission without public reference, which suggests the
importance of planning algorithm

O Fixed depth planning: agent behavior and retrieving limited information in
reward map. That is, the agent first examines all grids within Manhattan
distance d and goes toward the nearest grid that has positive reward.

O Conditional exhaustive planning: switching conditions for agent to start
exhaustive planning on reward map, to strike balance in exploitation and
exploration when public reference is not available.

* More importantly, exploration helps to establish a private reference and private
reward map which become valuable resource that can be provided for others and for
its future decision.
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Conditional Exhaustive Planning

=  Conditions to adopt planning:
Since exploration and planning
are both likely to benefit the
agent’s task, we consider a
block size of Nj.

= Grassfire algorithm: a breadth-
search first methods on grid-
based graph, can effectively
search and construct a path to
the goal on a graph

= Learning Ng

ITU ML5G Workshop, Geneva, June 17, 2019 KC Chen, USF EE

Grassfire algorithm: breadth-first
search on grid-based map, where

the yellow circle represents the
current position from which we try
to find a nearest goal, i.e. green grids.

41



et g-learning incorporating with
planning and localization

ITU ML5G Workshop, Geneva, June 17, 2019 KC Chen, USF EE
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“Thfofimdtion Exchange and Integration

for Collaborative Agents

each agent shall transmit its relative
location and private reference M,
(i.e. map beingexplored up to now)
with information of grids being
visited and sensed (i.e.
corresponding state values).

Furthermore, as indicatedin earlier
research, state-value function with
reward map shall be also sent.

At the receiver end(s), after
obtaining external private reference
(M, i~ i) and experience, the
robot will update the original
private reference M,

ITU ML5G Workshop, Geneva, June 17, 2019 KC Chen, USF EE
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Multiple Access:

p-persistent rt-ALOHA

Latency is so critical for information
exchange among collaborative
agents to suggest real-time ALOHA

When the channel is busy, the
agent (i.e. cleaning robot) is ready
to receive immediately.

When the channel is idle, the
agent broadcasts the message of
desirable content, then
immediately turns ready to
receive from others right after
transmission without any
acknowledgement.

There is no retransmission and
thus backlogging.

ITU ML5G Workshop, Geneva, June 17, 2019

Borrowing the concept from CSMA

Proactive: if the agent senses
other agents are within its
communication range and the
channel is not busy, agent
broadcasts messages with
probability p,,.

Reactive: When the multi-access
channel is busy, the agent stays at
the reactive mode, ready to
receive other’s broadcast. When
agent senses other agents are
within its communication range,
agent stays at the reactive mode
with probability 1 - p,.

KC Chen, USF EE 44



e @bl@ctive Performance of
Collaborative Agents Using
p-persistent rt-ALOHA

(a)with p,=0.1
(b)with p, = 0.3 for
N =2 (yellow), 5 (blue), 10 (red).

ITU ML5G Workshop, Geneva, June 17, 2019 KC Chen, USF EE
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- \Nireless Communications Greatly
Enhances Collective Performance of
Collaborative Agents (MAS)

ITU ML5G Workshop, Geneva, June 17, 2019 KC Chen, USF EE
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"Thesecsrid cleaning robot is useless if
they can not communicate each other!

IS

ITU ML5G Workshop, Geneva, June 17, 2019 KC Chen, USF EE 47
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Lessons

" Wireless communications and networking can significantly
enhance the collective performance of collaborative
robots/agents/MAS (i.e. Al, while Al computing will be
limited by hardware)

O Latency can greatly degrade the usefulinformationamong
agents

O rt-ALOHA is therefore useful in ultra-low latency communication
and system reliability

O p-persistent providesa means to adjust multiple access
communication amongagents/robots

O Application scenariosinclude smart factory/manufacturing,
service robots, and autonomousvehicles.

= Wireless robotic communications, a new kind of machine-
to-machine communications, emerges!

O Again, latency and consequently age of information/datais
U mise watehcnQnedimpRdtant than throughput in networking Al. 48
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ML/AI and WC

= ML/Al enhances WC
= ML/Al enables WC

= \WC enables ML/AI

O E. Ko, K.-C. Chen, “Wireless Communications Meets
Artificial Intelligence: An lllustration by Autonomous
Vehicles on Manhattan Streets”, IEEE Globecom, 2018.

O K.-C. Chen, H.-M. Hung, “Wireless Robotic
Communication for Collaborative Multi-Agent
Systems”, IEEE International Conference on
Communications, 2019.

= Future Network Architecture for Al/ML

ITU ML5G Workshop, Geneva, June 17, 2019 KC Chen, USF EE 49



“"Holistic View of Computing and
Networking

Cloud Computing

Core Network

1
1
Data E .
Center i achine
: Learning
1

Radio Access Network
(RAN)

Edge
Computing

Agents ‘
(Mobile Nodes) i i i
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“Nétwiork Architecture of Offline
Machine Learning

Possible Realization of MPP

with New Data Flows or Cloud Computing
Connections and New : Core Network
Networking/Computing i

. . Machine
Entities in Network = s |~ e -
Architecture l ......... 1 _____ 1 _____ [ ____________________

Deep
Learning

Transfer
Learning

Offline ML means that
ML is not directly used

for online network Agents/UE A
functionalities. (Mobile Nodes) é “ & “

(in red lines/boxes) E achine T e
Radio Access Network | Learning | Mobility
(RAN) COriigfung 5G AIV 5G AIV Management

_________________________________________________ P__, Measurement or
Context data
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Holistic View of Al Computing and
Networking

Cloud Computing

Core Network

1
1
Data E hi
Center i
: Learning
1

_______________________________
Machine
Learning

K <

Radio Access Network

(RAN) Edge

Computing

Agents
(Mobile Nodes)
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Not just autonomous vehicles,
but also smart factory, service robotics, ...

COMMUNICATION FOR Al:
A NEW TECHNOLOGY PARADIGM

ITU ML5G Workshop, Geneva, June 17, 2019 KC Chen, USF EE
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