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5G	Technology
§ The	well	known	pillar	
technologies	for	5G
o Enhanced	Mobile	Broadband	
(eMBB)

o Massive	M2M/IoT Communication	
(mMTC)

o Ultra	Reliable	and	Low	Latency	
Communication	(uRLLC)
• Mission	critical	services

§ Field	trials	are	coming
§ Machine	learning	emerges
§ AI	for	5G	and	Beyond
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INTRODUCTION

Wireless personal communications have been
widely applied to exchange voice, audio, video,
emails, photos, and more among individuals.
Such demands of ubiquitous communications
among humans thus drive the development of
abundant advanced wireless technologies and
systems such as the cognitive radio network
(CRN) and Third Generation Partnership Pro-
ject (3GPP) Long Term Evolution-Advanced
(LTE-Advanced) [1]. In addition to human-to-
human (H2H) communications, an emerging
technology empowering full mechanical automa-
tion (e.g., the Internet of Things and the smart
grid) that may change our living styles is vigor-
ously being developed. Such communications

among machine-type communications (MTC)
devices are known as machine-to-machine
(M2M) communications [2].

To enable full mechanical automation, three
major classes of communications shall be
involved.
• Communications between the sensor and

the decision maker: Meters/sensors report
the measured data to the decision maker.

• Communications among multiple calcula-
tion agents within the decision maker: The
decision maker may comprise multiple cal-
culation agents. Based on the measured
data, the decision maker may perform the
decision making calculations by leveraging
calculation agents with cloud computing or
distributed computing technologies [3], and
each calculation agent keeps exchanging
temporal calculation results with other cal-
culation agents.

• Communications between the decision
maker and the action executor: After
accomplishing calculations, the decision
maker announces the set of actions to cor-
responding action executors.
Therefore, the sensor network [4] can be

viewed as a primitive form of M2M communica-
tions, where a certain number of sensors are
responsible for measuring certain physical quan-
tities and transmitting measured data to the
decision maker. In the 1990s, the supervisory
control and data acquisition (SCADA) system
was a primitive realization of the sensor net-
work, where the central decision maker actively
polls field equipment regularly. In sensor net-
work communications, only a firm connection
between each sensor and the decision maker (by
direct transmissions, or multihop relaying via
other sensors in recent enhancements) is provid-
ed. However, the communication framework in
the sensor network faces difficulties in satisfying
the requirements of recent, more sophisticated
scenarios such as the smart grid or intelligent
transportation system (ITS), where each smart
device can play more than one role of sensor,
decision maker, and action executor. As a result,
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To enable full mechanical automation where
each smart device can play multiple roles among
sensor, decision maker, and action executor, it is
essential to construct scrupulous connections
among all devices. Machine-to-machine commu-
nications thus emerge to achieve ubiquitous
communications among all devices. With the
merit of providing higher-layer connections, sce-
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ic application to be supported by LTE-Advanced.
However, distinct features in M2M communica-
tions create diverse challenges from those in
human-to-human communications. To deeply
understand M2M communications in 3GPP, in
this article, we provide an overview of the net-
work architecture and features of M2M commu-
nications in 3GPP, and identify potential issues
on the air interface, including physical layer
transmissions, the random access procedure, and
radio resources allocation supporting the most
critical QoS provisioning. An effective solution is
further proposed to provide QoS guarantees to
facilitate M2M applications with inviolable hard
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Reality	in	5G	Technology
§ Technology	for	eMBB is

mature	in	5G	(R15)
o C-RAN,	massive	MIMO,	…
o NOMA	attracts	extensive
research	but	is	not	used

§ mMTC is	getting	mature,
after	years’	efforts

§ uRLLC is	rather	young	and
only	one	use	case	in	R15
o It	is	actually	technological
paradigm	shift,	but	not
widely	understood

o Reliability	suggests
successful	completion	of
intelligent	control	and
management	missions,	not
just	successful	packet
delivery

o A	packet	correctly	received
but	exceeding	latency
requirement	is	useless

o Primary	M2M,	not	H2H
ITU	ML5G	Workshop,	Geneva,	June	17,	2019 KC	Chen,	USF	EE 3
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RISE	OF	MACHINES

Are	you	still	making	phone	calls?
AI,	AI,	and	AI;	ML,	ML,	and	ML

ITU	ML5G	Workshop,	Geneva,	June	17,	2019 KC	Chen,	USF	EE 4
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From	Driving	Assistance	to	Autonomous	Driving

ITU	ML5G	Workshop,	Geneva,	June	17,	2019 KC	Chen,	USF	EE 5

Intersection
Case 1: Intersection 

• The yellow car trying to turn right
• The green car driving very fast

The Disaster

• First time the yellow car checked the 
lane, there were no cars

• But when the yellow car turning right, 
the green car already coming across

Parking Truck
to Block View

Green	car	at	50	MPH	
implies	 273	feet	
safe	distance
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From	Driving	Assistance	to	Autonomous	Driving
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Intersection
Case 1: Intersection 

• The yellow car trying to turn right
• The green car driving very fast

The Disaster

• First time the yellow car checked the 
lane, there were no cars

• But when the yellow car turning right, 
the green car already coming across

Parking Truck
to Block View

Q1:	Do	we	need	networking	for	a	
single	autonomous	vehicle	as	good	
as	human	driving?			

Q2:	Do	we	need	networking	for	a	
single	autonomous	vehicle	more	
reliable	and	safe	than	human	driving?

Q3:	Do	we	need	networking	for	
massive	operation	of	AVs?
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WIRELESS	COMMUNICATIONS	
MEETS	ARTIFICIAL INTELLIGENCE

An	Illustration	by	Autonomous	Vehicles	on	
Manhattan	Streets	[IEEE	Globecom2018]

ITU	ML5G	Workshop,	Geneva,	June	17,	2019 KC	Chen,	USF	EE 7
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Riobots

8

§ Autonomous	 vehicles	are		
increasingly	 present	 in	modern	
society

§ The	development	 of	AVs	 is	the	key	
of	the	new	transportation	system

• The	technologies	of	Autonomous	Vehicle	
itself	are	developed	well

• But	we	assume	a	lot	of	AVs	on	the	road	
• Communications	among	AVs	will	be	crucial

Image	:	govtech.com
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Technological	Requirements

9

§ Radio	resource	for	bandwidth	or
latency?

§ What	to	communication?
§ How	and	when	to	communicate?

At	this	moment

AgentAgent

Agent Machine
Learning

Machine
Learning

Machine
Learning

AgentAgent

Agent Machine
Learning

Machine
Learning

Machine
Learning

Machine
Learning

What	we	need

Most	of	 assumed	 AV	
communications	 	are	just	utilizing	

the	communication	 system	

Machine	 Learning	 should	 be	
applied	 with	not	only	 AVs,	 also	with	

the	communication	 system

ITU	ML5G	Workshop,	Geneva,	June	17,	2019 KC	Chen,	USF	EE
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Deeper	Technological	Thoughts
§ If	AI	Agents	(autonomous	vehicles,	robots,	etc.)	in
massive	scale,	will	be	around	everywhere	in	our
daily	life,	their	interactions	would	be	the	most
critical	issue	in	future	digital	society.

§ The	role	of	(wireless)	networking	and
communication	for	AI/ML	is	overlooked	in
literature,	we	know	almost	NOTHING	from	this
aspect.
o We	assume	M2M	communication	identical	to	H2H
communication.	Is	it	right?

ITU	ML5G	Workshop,	Geneva,	June	17,	2019 KC	Chen,	USF	EE 10
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Streets
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Reinforcement	Learning

§ The	agent	implements	a	mapping	from	states	to	
probabilities	of	selecting	each	possible	action

§ This	mapping	is	called	the	agent's	policy	and	is	denoted	𝜋" ,	
where	𝜋"(𝑎|𝑠) is	the	probability	that	𝑎" = a	if	𝑠" = 𝑠

§ The	agent's	goal	is	to	maximize	the	total	amount	of	
reward	it	receives	over	the	long	run

ITU	ML5G	Workshop,	Geneva,	June	17,	2019 KC	Chen,	USF	EE 12
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Value	Function

§ Functions	of	states	(or	of	state-action	pairs)	that	estimate	how	good	it
is	for	the	agent	to	be	in	a	given	state	(or	how	good	it	is	to	perform	a
given	action	in	a	given	state)

§ A	policy,	𝜋,	is	a	mapping	from	each	state, s ∈ 𝒮,	and	action,	a ∈ 𝒜 𝑠 ,
to	the	probability	𝜋(𝑎|𝑠)of	taking	action	𝑎 when	in	state	𝑠

§ The	value	of	a	state	𝑠 under	a	policy	𝜋,	denoted	𝑣0 𝑠 ,	is	the	expected
return	when	starting	in	𝑠	and	following	𝜋 thereafter

Value	Function

𝔼0 [ 2	] denote	 the	expected	 value	 of	a	random	 variable	 given	that	the	agent	follows	 policy	 𝜋

𝑣0(𝑠) = 𝔼0 [𝐺" 𝑠" = 𝑠 = 𝔼0 ∑ 𝛾78
79: 𝑅"<7<= 𝑠" = 𝑠

ITU	ML5G	Workshop,	Geneva,	June	17,	2019 KC	Chen,	USF	EE 13
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Q-learning
§ When	state	estimation	is	not	perfectly	available,	using	belief-

action	in	RL,	Q-learning.
§ Under	the	environment	changing,	Q-learning	is	updating	q-

function	𝑄 𝑠", 𝑎" with	q-function	𝑄 𝑠"<=,𝑎" at	next	state
§ α is	learning	step,	which	is	related	to	learning	speed

14

• The	length	of	planning	horizon
• The	reward	structure

𝑄 𝑠", 𝑎" ← 𝑄 𝑠", 𝑎" + α 𝑟"<= + 𝛾maxF𝑄 𝑠"<=, 𝑎 − 𝑄 𝑠", 𝑎"

𝑄 𝑠", 𝑎" ← (1 − α)𝑄 𝑠", 𝑎" + α 𝑟"<= + 𝛾maxF𝑄 𝑠"<=, 𝑎

What	we	need	 to	consider

𝑺𝒌 𝑄 𝑆" 	𝑟𝑖𝑔ℎ𝑡𝑄 𝑆", 𝑙𝑒𝑓𝑡

𝑄 𝑆", 𝑢𝑝

𝑄 𝑆" , 𝑑𝑜𝑤𝑛

ITU	ML5G	Workshop,	Geneva,	June	17,	2019 KC	Chen,	USF	EE
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Manhattan	Street	Model
§ Each	vehicle	has	different	source-destination	relations	but

going	through	the	same	street	region	without	knowing
each	others’	information

§ Public	reference	(i.e.	map)	is	available	to	all	vehicles

15ITU	ML5G	Workshop,	Geneva,	June	17,	2019 KC	Chen,	USF	EE
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Manhattan	Street	Demo

• Manhattan	Model	Street	
(M=4,	N=6,	b=5)
• 10	cars	coming	into	the	
street
• Safety	and	reliability	is	top	
priority	over	time	to	travel	
(performance)

16ITU	ML5G	Workshop,	Geneva,	June	17,	2019 KC	Chen,	USF	EE
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Without	Communication

§ At	time	𝑘,	the	agent	recognizes	other	vehicle	
and	generates	reward	map	𝑅Z,"

§ For	𝑘 + 𝑑	 (𝑑 = 1,… , 𝐷, 𝐷 is	the	depth	of	
horizon)	will	be	the	expected	 reward	map	
𝑅]"<7

17

𝑅]"<^

𝑅]"<^

The	agent	makes	decision	based	on	ℝZ,":"<a

ℝZ,":"<a = {𝑅Z,", 𝑅]Z,"<=, … , 𝑅]"<a}

𝑅]Z,"<7 = [�̂�fghi ]

𝑅]"<^
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Without	Communication

§ At	time	𝑘,	the	agent	recognizes	other	vehicle
and	generates	reward	map	𝑅Z,"

§ For	𝑘 + 𝑑	 (𝑑 = 1,… , 𝐷, 𝐷 is	the	depth	of
horizon)	will	be	the	expected	 reward	map
𝑅]"<7

18

𝑅]"<= 𝑅]"<j 𝑅]"<^ 𝑅]"<k

𝑅]"<k 𝑅]"<j

𝑅]"<l

𝑅]"<=𝑅]"<^𝑅]"<l

The	agent	makes	decision	based	on	ℝZ,":"<a

ℝZ,":"<a = {𝑅Z,", 𝑅]Z,"<=, … , 𝑅]"<a}

𝑅]Z,"<7 = [�̂�fghi ]
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Expected	Rewards

§ The	expected	reward	for	each	position
• A	yellow car	calculate	 the	expected	 reward	with	
each	position	(state	𝑠")	with	the	probability	𝑝F

19

𝑅]"<= 𝑅]"<j 𝑅]"<^ 𝑅]"<k

𝑅]"<k 𝑅]"<j

𝑅]"<l

𝑅]"<=𝑅]"<^𝑅]"<l
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Ideal	V2V	Communication

• Manhattan	Model	Street	
(M=4,	N=6,	b=5)
• 20	cars	coming	into	the	
street
• Communication	range	r=3

20

No	Connection
Connected	with	other	cars

ITU	ML5G	Workshop,	Geneva,	June	17,	2019 KC	Chen,	USF	EE
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Ideal	V2V	Communication
§ Assuming	cars	can	communicate	with	each	other	within	the	communication	range	𝑟
§ In	the	simple	scenario	of	V2V,	cars	will	have	two	kind	of	additional	information

Within	 the	communication	 range	𝑟,	the	yellow	 car	will	
recognize	the	other	 cars’	positions	

The	yellow	 car	will	get	the	information	 about	other	
cars’	movement	 (directions)

21ITU	ML5G	Workshop,	Geneva,	June	17,	2019 KC	Chen,	USF	EE
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Ideal	V2V	Communication

§ The	𝑖-th AV	probes	 other	vehicles’	 reward	
maps	at	time	𝑘 if	any	(𝑗 ∈ 𝕀")	AV	within	the	
communication	range,	the	𝑖-th successfully	
receives	ℝo,":"<a

22

• No	matter	receiving	from	other	
AVs	or	not,	the	𝑖	–th AV	broadcast	
own	reward	map	ℝZ,":"<a

ITU	ML5G	Workshop,	Geneva,	June	17,	2019 KC	Chen,	USF	EE
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Ideal	V2I2V	Communication

• Manhattan	Model	Street	(M=4,	
N=6,	b=5)

• 20	cars	coming	 into	the	street

• Communication	 range	r=3

23

No	Connection
Connected	with	AP

AP:	no	connection

AP:	connecting	with	cars

ITU	ML5G	Workshop,	Geneva,	June	17,	2019 KC	Chen,	USF	EE
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Ideal	V2I2V	Communication

§ The	network	 infrastructure	 (NI)	
relays	the	reward	maps	
ℝpqr,":"<a through	APs	𝑚 ∈ 𝑀

24ITU	ML5G	Workshop,	Geneva,	June	17,	2019 KC	Chen,	USF	EE
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What	is	expected

§ Without	communication,	AV	needs	to	predict	the	other	AV’s	
moving	from	observation

§ For	V2V	and	V2I2V,	within	the	communication	range,	AV’s	can	
swap	the	accurate	information	about	other	vehicles	movement

25

• Average	delays	(from	the	driving	time	to	the	destination)	can	be	
reduced	by	V2V	and	V2I2V	communication

• V2I2V	communication	will	improve	the	performance	with	smaller	
range

ITU	ML5G	Workshop,	Geneva,	June	17,	2019 KC	Chen,	USF	EE
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Resource
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§ If	there	are	the	packet	to	transmit,	then	transmit	the	packets
§ There	are	collisions	when	the	multi-access	occurs

ALOHA	with	1	channel

For	Vehicle	Communication

• If	the	channel	is	idle,	the	car	broadcasts	own	reward	map	ℝ	↑ within	
communication	range	r

• If	the	channel	is	busy,	the	car	waits	for	receiving	other	cars	reward	map	
ℝ	↓

• If	the	collisions	occurs,	that	means	the	communication	fails	(no	
communication	mode)
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Resource

27

• Manhattan	Model	Street	
(M=4,	N=6,	b=5)
• 20	cars	coming	into	the	
street
• Communication	range	
r=3

No	Connection
Connected	with	other	cars
Collision	occurs	

ITU	ML5G	Workshop,	Geneva,	June	17,	2019 KC	Chen,	USF	EE
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Agent	Systems:	

New	Frontier	of	AI	Computing
§ Manhattan	Model	Street	(M=4,	N=6,	

b=5)

28ITU	ML5G	Workshop,	Geneva,	June	17,	2019 KC	Chen,	USF	EE

(a) MAS of RL with Ideal Wireless Commu-
nication

(b) Message Errors Degrade Performance of
MAS

(c) Multiple Access Communication by rt-
ALOHA

Fig. 5: Extra Average Delay in AVs (i.e. Extra Expected Number of Episodes for RL to Navigate) on Manhattan Streets

C. Multiple Access of rt-ALOHA
Realistic wireless communication for MAS requires con-

sideration on the multiple access, which is the core of
mobile communications. In particular, rt-ALOHA to meet
the operational needs of MAS requires further evaluations
given one operating channel. Fig.5c shows the V2V with
communication range r = 6 and V2I2V with communication
range r = 3 using rt-ALOHA at one frequency channel. V2V
communication suffers more collisions and subsequent higher
extra delay, while infrastructure shows the potential to enable
better performance of MAS. We may initially conclude the
potential advantage of employing edge wireless networking
to assist MAS using RL.

VI. CONCLUSION

WC is considered as a major technology driving force in
past two decades, and AI emerges as the technology to change
future human society, where MAS is the major scope of
distributed AI and viewed as a social network of agents. By
illustrative explorations about autonomous vehicles navigating
on the Manhattan Streets, we successfully show the required
modifications on the RL algorithm for each agent in the MAS
when WC is employed to exchange information among agents.
We further show the impacts from WC on the performance
of MAS. Although a simplified version of explorations, many
innovations on technology are expected to suggest broader
scope of such research. WC meeting AI (i.e. social network of
smart agents connected by wireless networking) paves infinite
technological possibilities for human beings.
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Multiple	Access	of	rt-ALOHA

§ When	the	channel	is	busy,	the	agent	(i.e.	AV)	is	ready	to	
receive	immediately

§ When	the	channel	is	idle,	the	agent	broadcasts	the	
message,	and	ready	for	receiving	from	others	immediately	
after	transmission	without	any	acknowledgement	by	the	
receiving	agent(s)

§ There	is	no	retransmission	and	thus	backlogging
29

Modification	of	slotted	ALOHA	is	required	to	
support	RL,	named	as	real-time	ALOHA	(rt-ALOHA)	
due	to	the	nature	of	AI/ML	

• Data	is	useless	once	passing	the	required	networking	
or	communication	latency	è age	of	information
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Multiple	Access	of	rt-ALOHA
§ For	V2V	and	V2I2V	communication	with	one	operating	frequency	channel
§ If	the	channel	 is	occupied	 by	the	other	agent,	goes	without	communication

30

• When	V2V	and	V2I2V	communication	show	the	same	performance	in	the	ideal	communication
• However	the	longer	communication	 range	does	not	help	RL	with	limited	resource	unit

Ideal	Communication	 D	=	5 Rt-ALOHA	D	=	5
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AI	(Learning)	computing

§ D	means	the	depth	of	horizon	to	obtain	the	optimal	policy	in	
reinforcement	 learning,	while	the	computational	 complexity	growing	
exponentially	with	D

§ Collaborative	multi-agent	systems	would	be	more	complicated.
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Ideal Communication
• We see the how the communication improves the extra delay (steps)

18

D = 5 D = 10

• Communication improves the delays
• The longer depth of horizon improves the delay without communication, but not with communication

It seems the optimal D is different with/without communication  
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Lessons	from	Resource-Sharing	MAS
§ We	observe	the	how	the	communication	well	assists	RL,	

that	is,	networked	artificial	intelligence
o Multiple	access	consideration	suggests	small	cells.
o V2I2V	communication	better	assists	RL/AI	than	V2V	
communication

o Appropriate	communication	alleviates	computing	load!

§ Real-time	(i.e.	low-latency)	multiple	access	is	more	
desirable	in	communication	for	AI
o Age	of	information	exchanged	among	agents	is	a	critical	factor.	
o A	correctly	received	message	of	latency	larger	than	required	
value	in	ML	is	useless	in	AI.

o Fundamentally	different	from	H2H	communication.
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WIRELESS	ROBOTIC	
COMMUNICATIONS

Collaborative	multi-agent	systems	[IEEE	ICC	2019]
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Networked	Multi-Agent	Systems

§ AI/ML	for	communications	 emerges	
as	a	new	technological	 frontier.

§ However,	the	impacts	 of	wireless	
communication	 on	multiple	 AI	
agents/robots	 are	rarely	known.	

o Multiple	AI	agents	forms	a	multi-
agent	system	(MAS).	

o MAS	of	networking	 is	a	networked	
MAS.	

o Eisaku Ko and	K.-C.	Chen	(IEEE	GC’18)	
showed	wireless	communication	
enhances	resource	sharing	MAS.	

Wireless Robotic Communication for Collaborative
Multi-Agent Systems

Kwang-Cheng Chen
Department of Electrical Engineering

University of South Florida
Tampa, FL 33620, USA

kwangcheng@usf.edu

Hsuan-Man Hung
Graduate Institute of Communications Engineering

National Taiwan University
Taipei, Taiwan, ROC

shelleyhung836@gmail.com

Abstract—Collaborative robots as a multi-agent system to
complete a common mission without public reference but op-
erate individual decision and learning mechanism represent a
wide range of applications in artificial intelligence. With an
illustrative example, reinforcement learning with localization
and planning capabilities is developed to represent each robot’s
operation. It is shown that wireless robotic communication
can significantly enhance overall performance of collaborative
MAS in the distributed operating manner. After identify useful
information (i.e. reward map and private reference) to exchange,
according to properties of content, p-persistent real-time ALOHA
is suggested to serve as the multiple access protocol of the
ad-hoc style networking toward ultra- reliability and ultra-low
latency, resulting in satisfactory overall performance close to
ideal communication. Wireless robotic communication therefore
reveals new technological opportunities for robotics, multi-agent
systems, artificial intelligence, and communications.

Index Terms—artificial intelligence, machine learning, wireless
communications, multi-agent systems, reinforcement learning,
multiple access, robotic communication

I. INTRODUCTION

Applying artificial intelligence (AI), machine learning
(ML), and data analysis, to effectively design wireless com-
munication systems and wireless networks emerges as a new
technological paradigm with the advance of computing fa-
cilities and methodologies [1], [2]. On the other hand, how
wireless communication and networking to impact AI and
ML has been rarely investigated. The purpose of this paper
intends to explore the role and of wireless communication
among collaborative agents (or robots) that can be viewed as
a kind of networked multi-agent system (NetMAS) as shown
in Fig. 1, and impacts on this NetMAS.

An entity of computing capability such as a robot is known
as an agent in AI. Such an agent shall also equip with
sensors to cognize the environment and actuators to respond
the environment, where the environment is defined as outside
the control of the agent. A multi-agent system presents the
great potential of AI, particularly when these agents or robots
are cooperative, collaborative, or coordinated. In this paper,
collaboration is defined as the behavior of multiple agents
that share a common goal but AI in each agent operates
independently. For example, two or more floor cleaning robots
work together to clean a large floor area. As a matter of
fact, communication among multiple agents has been noted

in robotics and AI research for a while, say [3]. In recent
years, deeper investigations on communication in a team
of cooperative robots have been taken into considerations,
such as decentralized allocation of communication channels
and subsequent information sharing among agents [4], and
leveraging mobility to enhance diversity communication for
mobile robots [5].

Fig. 1. Collaborative Agents (Robots) of Wireless Communication Capability

To achieve the goal of this paper, a fundamental way to
look into wireless communications for collaborative MAS
is employed, which treats an agent operating according to
the reinforcement learning (RL). Different from supervised
learning dealing with labelled data or unsupervised learning
dealing with pure data, RL governs intelligence of an agent
to interact with environment, and coincides with our scope
of multiple agents or robots as Fig. 1. Communication in
an ideal manner with neighboring agents was recently taken
into consideration of RL [6]. A disruptive thinking to look
into the impacts from wireless communication to resource-
sharing NetMAS was conducted to successfully demonstrate
the important contribution of wireless communication to AI
systems, with focus on autonomous vehicular MAS [8], while
RL is therefore required to modify by incorporating rewards
from other agents under public known map. In this paper,
without knowing public reference map, by a toy but represen-
tative example, we show that multiple agents of RL collaborate
using wireless communication can obviously enhance their
collective performance. Further realistic situations in wireless
communications have been brought into study, namely random
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Robots	(Agents)	of	Wireless	Communication	Capability
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Wireless	Robotic	Communications
§ One	of	the	most	critical	

application	scenarios	 is	
collaborative	 robots	working	
together	 toward	a	common	
mission	in	distributed	
computing
o Collaborative	MAS
o Smart	factory,	service	robots,	 etc.

§ Goal:	To	comprehend	 the	role	of	
wireless	 robotic	communication	
in	collaborative	MAS
o Toy	example:	collaborative	robots	

to	clean	the	floor	as	right	hand	
layout

errors from the communication channels, and multiple access
communication among AI agents. Furthermore, due to the
information from other agents, localization (or known as robot-
pose) adapted RL by incorporating information and experience
(private reference or map in this particular study) from other
agents will be developed to greatly enjoy the benefits of
wireless communication.

II. SYSTEM MODEL AND REINFORCEMENT LEARNING

To examine the impacts of wireless communications on
collaborative agents of RL, we consider a toy example for
one or multiple cleaning robots to work on a large floor
consisting of a big number of square tiles as shown in Figure
2 corresponding to a grid-based map. Each robot can move
up, down, left, and right, in one unit of time. The cleaning
task of one tile/grid can be done within the same time unit.
These automated cleaning robots share the same mission (i.e.
to clean the entire floor) but each of them executes on own
intelligence without any centralized controller to manage their
actions, as a collaborative MAS. To make this example more
meaningful in diverse application scenarios, we assume

• The size and shape of the target area is time-invariant but
unknown to robots (i.e. agents). In other words, the map
of the target area is not available to agents.

• Each agent does not know its location at the beginning
and must explore to establish its private reference (i.e.
own but incomplete map of target area).

• Each agent equips appropriate sensors and localization
algorithm to tell each tile is to-be-cleaned, being cleaned
before, and a block. Each agent executes its own learning
and decision, which will be modeled as reinforcement
learning [9].

• The time to complete the mission of cleaning the entire
(or certain percentage of) floor is used as the performance
index of such AI (single-agent or multi-agent) system.

Robots, hereafter referred to as agents, are initially deployed
onto the target area randomly. Each agent equips sensors to
precisely observe neighboring 4 grids (upper, lower, left, and
right), to precisely move and clean in one time unit, but with-
out knowing the floor map. The agent must represent the en-
vironment by occupancy grid map. Since occupancy grid map
has been a predominant paradigm for spatial representation in
robotics, as outlined by Thrun [14], each agent interprets the
environment accordingly. Under the same mission, a challenge
for collaborative MAS comes from the inconsistency among
individual interpretations by agents. For example, an agent
does not know a clean grid because it is clean or another
agent cleaned it.

A. Reinforcement Learning Formulation

Based on the system model with uncertainty to each agent,
it is appropriate to employ reinforcement learning to represent
each agent’s behavior. The target area is represented in grid-
based map. Each grid represents a square tile of unit length at
each side, uniquely labelled by gp,q, p, q 2 N, which directly

Fig. 2. Floor plan of the cleaning area, where the area consists of 6760 free
space grids and 1227 obstacle grids

indicates its geometric position (p, q) on the grid map. Every
grid can belong to one of these types:

• Obstacles: A fully occupied grid that is not able to let
the robot traverse. Obstacle grids can be represented by
Mobs.

• Unvisited (uncleaned): A grid that is covered with dirt
but have not yet been cleaned. The set of unvisited grids
is MX .

• Visited (cleaned): A grid that has been cleaned and
doesn’t need to be visited again. The set of visited grids
is MO. (Note that unvisited grids and visited grids are
both free space, which is denoted by Mfree.)

The grid-based map of a target area is denoted by M, which
contains information about the size and shape of the target
area, the label of grids, and the type of grids. Agent is assumed
to follow a discrete time schedule t 2 {0, 1, 2, . . . }. It is able
to move from the current grid to the center of one of the
four adjacent grids at each time instance t. During time slot
(t, t + 1), it cleans up the current grid it is occupying. The
agent based on its observations (a grid is obstacle or not)
and experience (whether it has visited the grid) to establish
and update its own map, relative to the agent’s initial location
without knowing the true map. Such self-constructed map is
called private reference. Therefore, agent ui’s private reference
at time t is denoted by M

i
t
.

Let the state of the agent ui be defined by its current location
gi
p,q

. For example, given that at time t the agent ui is on grid
gi
p,q

, we use yi
t
= gi

p,q
to represent its state. Note that the

superscript in gi
p,q

indicates tusing its private reference. For
any state yi

t
, the possible action can be determined based on

earlier assumptions. In other words, it knows which neighbor
grids are traversable. With this assumption and letting N (yi

t
)

be the collection of four neighbor grids, we thus can define
the action set for state yi

t
to be

A(yi
t
) = {y|y 2 N (yi

t
) \ y 2 Mfree}. (1)

Since the agent is assumed to be able to accurately control
its motion, the state transition probability p(yi

t+1|y
i
t
, At) is

known. Suppose the previous state is yi
t
= gi

j,k
, the new state

is certain to be

yi
t+1 =

8
>>>>>><

>>>>>>:

gi
j,k

if At = stay

gi
j,k+1 if At = forward

gi
j,k�1 if At = back

gi
j�1,k if At = left

gi
j+1,k if At = right.

(2)
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Toy	Example:	 Floor	 plan	 of	the	cleaning	 area,	where	 the	area	
consists	 of	 6760	free	space	 grids	 and	1227	obstacle	 grids	
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System	Setup
§ Each	robot	can	move	up,	down,	left,	and	right,	in	one	unit	of	time.	The	

cleaning	 task	of	one	tile/grid	 can	be	done	within	the	same	time	unit.	These	
automated	 cleaning	robots	share	the	same	mission	(i.e.	to	clean	the	entire	
floor)	but	each	of	them	executes	 on	own	intelligence	 without	any	centralized	
controller	to	manage	their	actions,	as	a	collaborative	MAS.	

o No	Public	Reference:	The	size	and	shape	of	the	target	area	is	unknown to	robots	(i.e.	
agents).	In	other	words,	the	map	of	the	target	area	is	not	available	to	agents.	

o Localization:	Each	agent	does	not	know	its	location	at	the	beginning	and	must	explore	to	
establish	its	private	reference	(i.e.	own	but	 incomplete	map).	

o Each	agent	equips	appropriate	sensors	and	localization	algorithm	to	tell	each	tile	is	to-be-
cleaned,	being	cleaned	before,	and	a	block.	Each	agent	executes	its	own	learning	and	
decision,	which	will	be	modeled	as	reinforcement	learning	[9].	

o The	time	to	complete	the	mission	of	cleaning	the	entire	(or	certain	percentage	of)	floor	is	
used	as	the	performance	index	of	such	AI	system/MAS.
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Agent’s	Private	Reference
§ Let	gp,q label	the	grid

§ The	state	of	agent	ui is	
denoted	by	its	location.	
The	state	of	next	
instance	

§ The	reward	structure
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errors from the communication channels, and multiple access
communication among AI agents. Furthermore, due to the
information from other agents, localization (or known as robot-
pose) adapted RL by incorporating information and experience
(private reference or map in this particular study) from other
agents will be developed to greatly enjoy the benefits of
wireless communication.

II. SYSTEM MODEL AND REINFORCEMENT LEARNING

To examine the impacts of wireless communications on
collaborative agents of RL, we consider a toy example for
one or multiple cleaning robots to work on a large floor
consisting of a big number of square tiles as shown in Figure
2 corresponding to a grid-based map. Each robot can move
up, down, left, and right, in one unit of time. The cleaning
task of one tile/grid can be done within the same time unit.
These automated cleaning robots share the same mission (i.e.
to clean the entire floor) but each of them executes on own
intelligence without any centralized controller to manage their
actions, as a collaborative MAS. To make this example more
meaningful in diverse application scenarios, we assume

• The size and shape of the target area is time-invariant but
unknown to robots (i.e. agents). In other words, the map
of the target area is not available to agents.

• Each agent does not know its location at the beginning
and must explore to establish its private reference (i.e.
own but incomplete map of target area).

• Each agent equips appropriate sensors and localization
algorithm to tell each tile is to-be-cleaned, being cleaned
before, and a block. Each agent executes its own learning
and decision, which will be modeled as reinforcement
learning [9].

• The time to complete the mission of cleaning the entire
(or certain percentage of) floor is used as the performance
index of such AI (single-agent or multi-agent) system.

Robots, hereafter referred to as agents, are initially deployed
onto the target area randomly. Each agent equips sensors to
precisely observe neighboring 4 grids (upper, lower, left, and
right), to precisely move and clean in one time unit, but with-
out knowing the floor map. The agent must represent the en-
vironment by occupancy grid map. Since occupancy grid map
has been a predominant paradigm for spatial representation in
robotics, as outlined by Thrun [14], each agent interprets the
environment accordingly. Under the same mission, a challenge
for collaborative MAS comes from the inconsistency among
individual interpretations by agents. For example, an agent
does not know a clean grid because it is clean or another
agent cleaned it.

A. Reinforcement Learning Formulation

Based on the system model with uncertainty to each agent,
it is appropriate to employ reinforcement learning to represent
each agent’s behavior. The target area is represented in grid-
based map. Each grid represents a square tile of unit length at
each side, uniquely labelled by gp,q, p, q 2 N, which directly

Fig. 2. Floor plan of the cleaning area, where the area consists of 6760 free
space grids and 1227 obstacle grids

indicates its geometric position (p, q) on the grid map. Every
grid can belong to one of these types:

• Obstacles: A fully occupied grid that is not able to let
the robot traverse. Obstacle grids can be represented by
Mobs.

• Unvisited (uncleaned): A grid that is covered with dirt
but have not yet been cleaned. The set of unvisited grids
is MX .

• Visited (cleaned): A grid that has been cleaned and
doesn’t need to be visited again. The set of visited grids
is MO. (Note that unvisited grids and visited grids are
both free space, which is denoted by Mfree.)

The grid-based map of a target area is denoted by M, which
contains information about the size and shape of the target
area, the label of grids, and the type of grids. Agent is assumed
to follow a discrete time schedule t 2 {0, 1, 2, . . . }. It is able
to move from the current grid to the center of one of the
four adjacent grids at each time instance t. During time slot
(t, t + 1), it cleans up the current grid it is occupying. The
agent based on its observations (a grid is obstacle or not)
and experience (whether it has visited the grid) to establish
and update its own map, relative to the agent’s initial location
without knowing the true map. Such self-constructed map is
called private reference. Therefore, agent ui’s private reference
at time t is denoted by M

i
t
.

Let the state of the agent ui be defined by its current location
gi
p,q

. For example, given that at time t the agent ui is on grid
gi
p,q

, we use yi
t
= gi

p,q
to represent its state. Note that the

superscript in gi
p,q

indicates tusing its private reference. For
any state yi

t
, the possible action can be determined based on

earlier assumptions. In other words, it knows which neighbor
grids are traversable. With this assumption and letting N (yi

t
)

be the collection of four neighbor grids, we thus can define
the action set for state yi

t
to be

A(yi
t
) = {y|y 2 N (yi

t
) \ y 2 Mfree}. (1)

Since the agent is assumed to be able to accurately control
its motion, the state transition probability p(yi

t+1|y
i
t
, At) is

known. Suppose the previous state is yi
t
= gi

j,k
, the new state

is certain to be

yi
t+1 =

8
>>>>>><

>>>>>>:

gi
j,k

if At = stay

gi
j,k+1 if At = forward

gi
j,k�1 if At = back

gi
j�1,k if At = left

gi
j+1,k if At = right.

(2)

errors from the communication channels, and multiple access
communication among AI agents. Furthermore, due to the
information from other agents, localization (or known as robot-
pose) adapted RL by incorporating information and experience
(private reference or map in this particular study) from other
agents will be developed to greatly enjoy the benefits of
wireless communication.

II. SYSTEM MODEL AND REINFORCEMENT LEARNING

To examine the impacts of wireless communications on
collaborative agents of RL, we consider a toy example for
one or multiple cleaning robots to work on a large floor
consisting of a big number of square tiles as shown in Figure
2 corresponding to a grid-based map. Each robot can move
up, down, left, and right, in one unit of time. The cleaning
task of one tile/grid can be done within the same time unit.
These automated cleaning robots share the same mission (i.e.
to clean the entire floor) but each of them executes on own
intelligence without any centralized controller to manage their
actions, as a collaborative MAS. To make this example more
meaningful in diverse application scenarios, we assume

• The size and shape of the target area is time-invariant but
unknown to robots (i.e. agents). In other words, the map
of the target area is not available to agents.

• Each agent does not know its location at the beginning
and must explore to establish its private reference (i.e.
own but incomplete map of target area).

• Each agent equips appropriate sensors and localization
algorithm to tell each tile is to-be-cleaned, being cleaned
before, and a block. Each agent executes its own learning
and decision, which will be modeled as reinforcement
learning [9].

• The time to complete the mission of cleaning the entire
(or certain percentage of) floor is used as the performance
index of such AI (single-agent or multi-agent) system.

Robots, hereafter referred to as agents, are initially deployed
onto the target area randomly. Each agent equips sensors to
precisely observe neighboring 4 grids (upper, lower, left, and
right), to precisely move and clean in one time unit, but with-
out knowing the floor map. The agent must represent the en-
vironment by occupancy grid map. Since occupancy grid map
has been a predominant paradigm for spatial representation in
robotics, as outlined by Thrun [14], each agent interprets the
environment accordingly. Under the same mission, a challenge
for collaborative MAS comes from the inconsistency among
individual interpretations by agents. For example, an agent
does not know a clean grid because it is clean or another
agent cleaned it.

A. Reinforcement Learning Formulation

Based on the system model with uncertainty to each agent,
it is appropriate to employ reinforcement learning to represent
each agent’s behavior. The target area is represented in grid-
based map. Each grid represents a square tile of unit length at
each side, uniquely labelled by gp,q, p, q 2 N, which directly

Fig. 2. Floor plan of the cleaning area, where the area consists of 6760 free
space grids and 1227 obstacle grids

indicates its geometric position (p, q) on the grid map. Every
grid can belong to one of these types:

• Obstacles: A fully occupied grid that is not able to let
the robot traverse. Obstacle grids can be represented by
Mobs.

• Unvisited (uncleaned): A grid that is covered with dirt
but have not yet been cleaned. The set of unvisited grids
is MX .

• Visited (cleaned): A grid that has been cleaned and
doesn’t need to be visited again. The set of visited grids
is MO. (Note that unvisited grids and visited grids are
both free space, which is denoted by Mfree.)

The grid-based map of a target area is denoted by M, which
contains information about the size and shape of the target
area, the label of grids, and the type of grids. Agent is assumed
to follow a discrete time schedule t 2 {0, 1, 2, . . . }. It is able
to move from the current grid to the center of one of the
four adjacent grids at each time instance t. During time slot
(t, t + 1), it cleans up the current grid it is occupying. The
agent based on its observations (a grid is obstacle or not)
and experience (whether it has visited the grid) to establish
and update its own map, relative to the agent’s initial location
without knowing the true map. Such self-constructed map is
called private reference. Therefore, agent ui’s private reference
at time t is denoted by M

i
t
.

Let the state of the agent ui be defined by its current location
gi
p,q

. For example, given that at time t the agent ui is on grid
gi
p,q

, we use yi
t
= gi

p,q
to represent its state. Note that the

superscript in gi
p,q

indicates tusing its private reference. For
any state yi

t
, the possible action can be determined based on

earlier assumptions. In other words, it knows which neighbor
grids are traversable. With this assumption and letting N (yi

t
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be the collection of four neighbor grids, we thus can define
the action set for state yi

t
to be

A(yi
t
) = {y|y 2 N (yi
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) \ y 2 Mfree}. (1)

Since the agent is assumed to be able to accurately control
its motion, the state transition probability p(yi
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Every time the agent takes an action, besides transitioning
into next state, it also receives a real-valued reward Rt+1,
while the design of reward function is a critical part in
reinforcement learning. Given the agent’s state yi

t+1 = gi
p,q

,
its actual location can be obtained by a shift operator Ti. For
instance, if ui’s initial location with respect to realistic map
is gj,k, the operator Ti yields Ti(gip,q) = gp+j,q+k, while the
agent regards its initial location as the origin point of M

i.
Hence, for Ti(y1t+1) = ga,b, in order to encourage the robot
explore the map, we set the reward structure to be

Rt+1 =

(
R+ if ga,b has not been cleaned
R� otherwise.

(3)

R+ can be expressed as Rgood�E1. Rgood is a positive value
that encourages agent to gradually complete the cleaning task.
E1 represents the cost of moving from one grid to another.
When a grid has been cleaned, R� = �E1 as punishment.

B. Q-learning
It is ready to select baseline reinforcement learning for an

agent. Due to noisy sensing, the value on reward map eR(g)
suffers error with probability pe.

P{ eR(g) = R�
|g dirty} = P{ eR(g) = R+

|g cleaned} = pe
(4)

P{ eR(g) = R�
|g cleaned} = P{ eR(g) = R+

|g dirty} = 1� pe
(5)

Since error happens independently at each time when agent
looks up the reward map, error occurs independently in
R(g), 8g at any time t. As the true state is hidden, the agent
has to estimate the underlying state, the estimated state is
referred to as belief states. We use bi

t
to represent it. The agent

applies Q-learning to complete floor cleaning task subject to
hidden information [9], with ✏-greedy for exploration due to
unknown floor map, while the final algorithm is summarized
as follows.exhaustive

1) Agent is randomly deployed at a free space grid which
is defined as coordinate (0, 0) in its private reference
M

i
t
, t = 0.

2) Perceives 4 surrounding grids. For all a in action set
A(bi

t
), initialize Q(bi

t
, a) = Q0 if Q(bi

t
, a) has not been

defined. Q0 is just an initial value that could be set at
any value.

3) Calculate action-value function using eRt+1 in reward
map. The tilde over eQ(b, a) indicates that it is not the
real action-value but the estimated one. 8a 2 A(bi

t
),

eQ(bi
t
, a) Q(bi

t
, a)+↵[ eRt+1+argmax

a0
Q(bi

t+1, a
0)�Q(bi

t
, a)]

(6)
where eRt+1 follows Equation (3) but subject to error as
mentioned in Equation (4); yi

t+1 follows Equation (2).
4) Let the optimal action be a⇤ = argmaxa eQ(bi

t
, a).

Choose action At following ✏-greedy policy, that is

At =

(
a⇤ with probability 1� ✏

a 6= a⇤ with probability ✏

|A(bit)|�1
.

(7)

5) Operate action At, transits to state bi
t+1, and receive

reward Rt+1. Update the action-value function

Q(bi
t
, a) Q(bi

t
, a)+↵[Rt+1+argmax

a0
Q(bi

t+1, a
0)�Q(bi

t
, a)]

(8)
6) t t+1. If all rewards on reward map is R�, meaning

that all grids have been cleaned, terminate. Otherwise,
go back to step (ii).

After experimenting a few basic types of reinforcement
learning for each agent’s actions using sensor data, Q-learning
to estimate the action-value functions turns out to be effective
and we will use as baseline learning by incorporating further
techniques, while temporal difference learning in n steps (TD-
n) suffers from no global map information.

III. ROBOT PLANNING AND LOCALIZATION

Purely relying on reinforcement learning is very ineffective
to complete the task for a large area without floor map
(i.e. public reference among collaborative agents). To tackle
this dilemma, two paradigms for planning on private reward
map will be introduced for the purpose of localization and
planning [11]–[13]. The planning algorithms are imposed on
the agent’s behavior policy. Hence the agent adopts the original
behavior policy (e.g. ✏-greedy [9]) and a planning policy
interchangeably. The first planning algorithm is called fixed
depth planning, in which agent retrieves limited part of the
information in its reward map at every decision epoch. The
second paradigm imposes switching conditions for agent to
start exhaustive planning on reward map, and thus named as
conditional exhaustive planning.

A. Fixed Length Planning
Fixed depth planning (FDP) follows a straightforward way

to exploit reward map. It checks for any existence of positive
rewards in the reward map before using ✏-greedy policy. That
is, in spite of deciding action according to the action value,
the agent first examines all grids within Manhattan distance
d and goes toward the nearest grid that has positive reward.
Manhattan distance between agent’s current location gi

a,b
and

any grid gi
p,q

is defined as

md(gi
a,b

, gi
p,q

) = |a� p|+ |b� q| (9)

Consequently, fixed length planning consolidated with Q-
learning can be summarized by augmenting an extra step 2a)
between 2) and 3) in section II-B:
2a) Let the set of grids that are reachable from bi

t
in m steps

be denoted by N
m(bi

t
). Choose At such that the proceeding

believe state b0 is getting the agent closer to a grid of positive
reward (limited to Manhattan distance d). Tie breaks evenly.
If within distance d no positive reward exists, proceed to step
3). Otherwise go to step 5).

B. Conditional Exhaustive Planning
In the scenario of floor cleaning tasks, as well as other

tasks that cope with unknown environment, trade off between
exploration (in the environment) and exploitation (accomplish
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pe)	to	form	the	belief

§ ε-greedy	for	exploration	due	to	unknown	floor	
map	

§ TD-n	appears	to	be	a	good	version	of	RL	but	
actually	suffers	from	lacking	of	public	reference	
(map).	
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Every time the agent takes an action, besides transitioning
into next state, it also receives a real-valued reward Rt+1,
while the design of reward function is a critical part in
reinforcement learning. Given the agent’s state yi

t+1 = gi
p,q

,
its actual location can be obtained by a shift operator Ti. For
instance, if ui’s initial location with respect to realistic map
is gj,k, the operator Ti yields Ti(gip,q) = gp+j,q+k, while the
agent regards its initial location as the origin point of M

i.
Hence, for Ti(y1t+1) = ga,b, in order to encourage the robot
explore the map, we set the reward structure to be

Rt+1 =

(
R+ if ga,b has not been cleaned
R� otherwise.

(3)

R+ can be expressed as Rgood�E1. Rgood is a positive value
that encourages agent to gradually complete the cleaning task.
E1 represents the cost of moving from one grid to another.
When a grid has been cleaned, R� = �E1 as punishment.

B. Q-learning
It is ready to select baseline reinforcement learning for an

agent. Due to noisy sensing, the value on reward map eR(g)
suffers error with probability pe.

P{ eR(g) = R�
|g dirty} = P{ eR(g) = R+

|g cleaned} = pe
(4)

P{ eR(g) = R�
|g cleaned} = P{ eR(g) = R+

|g dirty} = 1� pe
(5)

Since error happens independently at each time when agent
looks up the reward map, error occurs independently in
R(g), 8g at any time t. As the true state is hidden, the agent
has to estimate the underlying state, the estimated state is
referred to as belief states. We use bi

t
to represent it. The agent

applies Q-learning to complete floor cleaning task subject to
hidden information [9], with ✏-greedy for exploration due to
unknown floor map, while the final algorithm is summarized
as follows.exhaustive

1) Agent is randomly deployed at a free space grid which
is defined as coordinate (0, 0) in its private reference
M

i
t
, t = 0.

2) Perceives 4 surrounding grids. For all a in action set
A(bi

t
), initialize Q(bi

t
, a) = Q0 if Q(bi

t
, a) has not been

defined. Q0 is just an initial value that could be set at
any value.

3) Calculate action-value function using eRt+1 in reward
map. The tilde over eQ(b, a) indicates that it is not the
real action-value but the estimated one. 8a 2 A(bi

t
),

eQ(bi
t
, a) Q(bi

t
, a)+↵[ eRt+1+argmax

a0
Q(bi

t+1, a
0)�Q(bi

t
, a)]

(6)
where eRt+1 follows Equation (3) but subject to error as
mentioned in Equation (4); yi

t+1 follows Equation (2).
4) Let the optimal action be a⇤ = argmaxa eQ(bi

t
, a).

Choose action At following ✏-greedy policy, that is

At =

(
a⇤ with probability 1� ✏

a 6= a⇤ with probability ✏

|A(bit)|�1
.

(7)

5) Operate action At, transits to state bi
t+1, and receive

reward Rt+1. Update the action-value function

Q(bi
t
, a) Q(bi

t
, a)+↵[Rt+1+argmax

a0
Q(bi

t+1, a
0)�Q(bi

t
, a)]

(8)
6) t t+1. If all rewards on reward map is R�, meaning

that all grids have been cleaned, terminate. Otherwise,
go back to step (ii).

After experimenting a few basic types of reinforcement
learning for each agent’s actions using sensor data, Q-learning
to estimate the action-value functions turns out to be effective
and we will use as baseline learning by incorporating further
techniques, while temporal difference learning in n steps (TD-
n) suffers from no global map information.

III. ROBOT PLANNING AND LOCALIZATION

Purely relying on reinforcement learning is very ineffective
to complete the task for a large area without floor map
(i.e. public reference among collaborative agents). To tackle
this dilemma, two paradigms for planning on private reward
map will be introduced for the purpose of localization and
planning [11]–[13]. The planning algorithms are imposed on
the agent’s behavior policy. Hence the agent adopts the original
behavior policy (e.g. ✏-greedy [9]) and a planning policy
interchangeably. The first planning algorithm is called fixed
depth planning, in which agent retrieves limited part of the
information in its reward map at every decision epoch. The
second paradigm imposes switching conditions for agent to
start exhaustive planning on reward map, and thus named as
conditional exhaustive planning.

A. Fixed Length Planning
Fixed depth planning (FDP) follows a straightforward way

to exploit reward map. It checks for any existence of positive
rewards in the reward map before using ✏-greedy policy. That
is, in spite of deciding action according to the action value,
the agent first examines all grids within Manhattan distance
d and goes toward the nearest grid that has positive reward.
Manhattan distance between agent’s current location gi

a,b
and

any grid gi
p,q

is defined as

md(gi
a,b

, gi
p,q

) = |a� p|+ |b� q| (9)

Consequently, fixed length planning consolidated with Q-
learning can be summarized by augmenting an extra step 2a)
between 2) and 3) in section II-B:
2a) Let the set of grids that are reachable from bi

t
in m steps

be denoted by N
m(bi

t
). Choose At such that the proceeding

believe state b0 is getting the agent closer to a grid of positive
reward (limited to Manhattan distance d). Tie breaks evenly.
If within distance d no positive reward exists, proceed to step
3). Otherwise go to step 5).

B. Conditional Exhaustive Planning
In the scenario of floor cleaning tasks, as well as other

tasks that cope with unknown environment, trade off between
exploration (in the environment) and exploitation (accomplish
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Every time the agent takes an action, besides transitioning
into next state, it also receives a real-valued reward Rt+1,
while the design of reward function is a critical part in
reinforcement learning. Given the agent’s state yi

t+1 = gi
p,q

,
its actual location can be obtained by a shift operator Ti. For
instance, if ui’s initial location with respect to realistic map
is gj,k, the operator Ti yields Ti(gip,q) = gp+j,q+k, while the
agent regards its initial location as the origin point of M

i.
Hence, for Ti(y1t+1) = ga,b, in order to encourage the robot
explore the map, we set the reward structure to be

Rt+1 =

(
R+ if ga,b has not been cleaned
R� otherwise.

(3)

R+ can be expressed as Rgood�E1. Rgood is a positive value
that encourages agent to gradually complete the cleaning task.
E1 represents the cost of moving from one grid to another.
When a grid has been cleaned, R� = �E1 as punishment.

B. Q-learning
It is ready to select baseline reinforcement learning for an

agent. Due to noisy sensing, the value on reward map eR(g)
suffers error with probability pe.

P{ eR(g) = R�
|g dirty} = P{ eR(g) = R+

|g cleaned} = pe
(4)

P{ eR(g) = R�
|g cleaned} = P{ eR(g) = R+

|g dirty} = 1� pe
(5)

Since error happens independently at each time when agent
looks up the reward map, error occurs independently in
R(g), 8g at any time t. As the true state is hidden, the agent
has to estimate the underlying state, the estimated state is
referred to as belief states. We use bi

t
to represent it. The agent

applies Q-learning to complete floor cleaning task subject to
hidden information [9], with ✏-greedy for exploration due to
unknown floor map, while the final algorithm is summarized
as follows.exhaustive

1) Agent is randomly deployed at a free space grid which
is defined as coordinate (0, 0) in its private reference
M

i
t
, t = 0.

2) Perceives 4 surrounding grids. For all a in action set
A(bi

t
), initialize Q(bi

t
, a) = Q0 if Q(bi

t
, a) has not been

defined. Q0 is just an initial value that could be set at
any value.

3) Calculate action-value function using eRt+1 in reward
map. The tilde over eQ(b, a) indicates that it is not the
real action-value but the estimated one. 8a 2 A(bi

t
),

eQ(bi
t
, a) Q(bi

t
, a)+↵[ eRt+1+argmax

a0
Q(bi

t+1, a
0)�Q(bi

t
, a)]

(6)
where eRt+1 follows Equation (3) but subject to error as
mentioned in Equation (4); yi

t+1 follows Equation (2).
4) Let the optimal action be a⇤ = argmaxa eQ(bi

t
, a).

Choose action At following ✏-greedy policy, that is

At =

(
a⇤ with probability 1� ✏

a 6= a⇤ with probability ✏

|A(bit)|�1
.

(7)

5) Operate action At, transits to state bi
t+1, and receive

reward Rt+1. Update the action-value function

Q(bi
t
, a) Q(bi

t
, a)+↵[Rt+1+argmax

a0
Q(bi

t+1, a
0)�Q(bi

t
, a)]

(8)
6) t t+1. If all rewards on reward map is R�, meaning

that all grids have been cleaned, terminate. Otherwise,
go back to step (ii).

After experimenting a few basic types of reinforcement
learning for each agent’s actions using sensor data, Q-learning
to estimate the action-value functions turns out to be effective
and we will use as baseline learning by incorporating further
techniques, while temporal difference learning in n steps (TD-
n) suffers from no global map information.

III. ROBOT PLANNING AND LOCALIZATION

Purely relying on reinforcement learning is very ineffective
to complete the task for a large area without floor map
(i.e. public reference among collaborative agents). To tackle
this dilemma, two paradigms for planning on private reward
map will be introduced for the purpose of localization and
planning [11]–[13]. The planning algorithms are imposed on
the agent’s behavior policy. Hence the agent adopts the original
behavior policy (e.g. ✏-greedy [9]) and a planning policy
interchangeably. The first planning algorithm is called fixed
depth planning, in which agent retrieves limited part of the
information in its reward map at every decision epoch. The
second paradigm imposes switching conditions for agent to
start exhaustive planning on reward map, and thus named as
conditional exhaustive planning.

A. Fixed Length Planning
Fixed depth planning (FDP) follows a straightforward way

to exploit reward map. It checks for any existence of positive
rewards in the reward map before using ✏-greedy policy. That
is, in spite of deciding action according to the action value,
the agent first examines all grids within Manhattan distance
d and goes toward the nearest grid that has positive reward.
Manhattan distance between agent’s current location gi

a,b
and

any grid gi
p,q

is defined as

md(gi
a,b

, gi
p,q

) = |a� p|+ |b� q| (9)

Consequently, fixed length planning consolidated with Q-
learning can be summarized by augmenting an extra step 2a)
between 2) and 3) in section II-B:
2a) Let the set of grids that are reachable from bi

t
in m steps

be denoted by N
m(bi

t
). Choose At such that the proceeding

believe state b0 is getting the agent closer to a grid of positive
reward (limited to Manhattan distance d). Tie breaks evenly.
If within distance d no positive reward exists, proceed to step
3). Otherwise go to step 5).

B. Conditional Exhaustive Planning
In the scenario of floor cleaning tasks, as well as other

tasks that cope with unknown environment, trade off between
exploration (in the environment) and exploitation (accomplish
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Every time the agent takes an action, besides transitioning
into next state, it also receives a real-valued reward Rt+1,
while the design of reward function is a critical part in
reinforcement learning. Given the agent’s state yi

t+1 = gi
p,q

,
its actual location can be obtained by a shift operator Ti. For
instance, if ui’s initial location with respect to realistic map
is gj,k, the operator Ti yields Ti(gip,q) = gp+j,q+k, while the
agent regards its initial location as the origin point of M

i.
Hence, for Ti(y1t+1) = ga,b, in order to encourage the robot
explore the map, we set the reward structure to be

Rt+1 =

(
R+ if ga,b has not been cleaned
R� otherwise.

(3)

R+ can be expressed as Rgood�E1. Rgood is a positive value
that encourages agent to gradually complete the cleaning task.
E1 represents the cost of moving from one grid to another.
When a grid has been cleaned, R� = �E1 as punishment.

B. Q-learning
It is ready to select baseline reinforcement learning for an

agent. Due to noisy sensing, the value on reward map eR(g)
suffers error with probability pe.

P{ eR(g) = R�
|g dirty} = P{ eR(g) = R+

|g cleaned} = pe
(4)

P{ eR(g) = R�
|g cleaned} = P{ eR(g) = R+

|g dirty} = 1� pe
(5)

Since error happens independently at each time when agent
looks up the reward map, error occurs independently in
R(g), 8g at any time t. As the true state is hidden, the agent
has to estimate the underlying state, the estimated state is
referred to as belief states. We use bi

t
to represent it. The agent

applies Q-learning to complete floor cleaning task subject to
hidden information [9], with ✏-greedy for exploration due to
unknown floor map, while the final algorithm is summarized
as follows.exhaustive

1) Agent is randomly deployed at a free space grid which
is defined as coordinate (0, 0) in its private reference
M

i
t
, t = 0.

2) Perceives 4 surrounding grids. For all a in action set
A(bi

t
), initialize Q(bi

t
, a) = Q0 if Q(bi

t
, a) has not been

defined. Q0 is just an initial value that could be set at
any value.

3) Calculate action-value function using eRt+1 in reward
map. The tilde over eQ(b, a) indicates that it is not the
real action-value but the estimated one. 8a 2 A(bi

t
),

eQ(bi
t
, a) Q(bi

t
, a)+↵[ eRt+1+argmax

a0
Q(bi

t+1, a
0)�Q(bi

t
, a)]

(6)
where eRt+1 follows Equation (3) but subject to error as
mentioned in Equation (4); yi

t+1 follows Equation (2).
4) Let the optimal action be a⇤ = argmaxa eQ(bi

t
, a).

Choose action At following ✏-greedy policy, that is

At =

(
a⇤ with probability 1� ✏

a 6= a⇤ with probability ✏

|A(bit)|�1
.

(7)

5) Operate action At, transits to state bi
t+1, and receive

reward Rt+1. Update the action-value function

Q(bi
t
, a) Q(bi

t
, a)+↵[Rt+1+argmax

a0
Q(bi

t+1, a
0)�Q(bi

t
, a)]

(8)
6) t t+1. If all rewards on reward map is R�, meaning

that all grids have been cleaned, terminate. Otherwise,
go back to step (ii).

After experimenting a few basic types of reinforcement
learning for each agent’s actions using sensor data, Q-learning
to estimate the action-value functions turns out to be effective
and we will use as baseline learning by incorporating further
techniques, while temporal difference learning in n steps (TD-
n) suffers from no global map information.

III. ROBOT PLANNING AND LOCALIZATION

Purely relying on reinforcement learning is very ineffective
to complete the task for a large area without floor map
(i.e. public reference among collaborative agents). To tackle
this dilemma, two paradigms for planning on private reward
map will be introduced for the purpose of localization and
planning [11]–[13]. The planning algorithms are imposed on
the agent’s behavior policy. Hence the agent adopts the original
behavior policy (e.g. ✏-greedy [9]) and a planning policy
interchangeably. The first planning algorithm is called fixed
depth planning, in which agent retrieves limited part of the
information in its reward map at every decision epoch. The
second paradigm imposes switching conditions for agent to
start exhaustive planning on reward map, and thus named as
conditional exhaustive planning.

A. Fixed Length Planning
Fixed depth planning (FDP) follows a straightforward way

to exploit reward map. It checks for any existence of positive
rewards in the reward map before using ✏-greedy policy. That
is, in spite of deciding action according to the action value,
the agent first examines all grids within Manhattan distance
d and goes toward the nearest grid that has positive reward.
Manhattan distance between agent’s current location gi

a,b
and

any grid gi
p,q

is defined as

md(gi
a,b

, gi
p,q

) = |a� p|+ |b� q| (9)

Consequently, fixed length planning consolidated with Q-
learning can be summarized by augmenting an extra step 2a)
between 2) and 3) in section II-B:
2a) Let the set of grids that are reachable from bi

t
in m steps

be denoted by N
m(bi

t
). Choose At such that the proceeding

believe state b0 is getting the agent closer to a grid of positive
reward (limited to Manhattan distance d). Tie breaks evenly.
If within distance d no positive reward exists, proceed to step
3). Otherwise go to step 5).

B. Conditional Exhaustive Planning
In the scenario of floor cleaning tasks, as well as other

tasks that cope with unknown environment, trade off between
exploration (in the environment) and exploitation (accomplish

Every time the agent takes an action, besides transitioning
into next state, it also receives a real-valued reward Rt+1,
while the design of reward function is a critical part in
reinforcement learning. Given the agent’s state yi

t+1 = gi
p,q

,
its actual location can be obtained by a shift operator Ti. For
instance, if ui’s initial location with respect to realistic map
is gj,k, the operator Ti yields Ti(gip,q) = gp+j,q+k, while the
agent regards its initial location as the origin point of M

i.
Hence, for Ti(y1t+1) = ga,b, in order to encourage the robot
explore the map, we set the reward structure to be

Rt+1 =

(
R+ if ga,b has not been cleaned
R� otherwise.

(3)

R+ can be expressed as Rgood�E1. Rgood is a positive value
that encourages agent to gradually complete the cleaning task.
E1 represents the cost of moving from one grid to another.
When a grid has been cleaned, R� = �E1 as punishment.

B. Q-learning
It is ready to select baseline reinforcement learning for an

agent. Due to noisy sensing, the value on reward map eR(g)
suffers error with probability pe.

P{ eR(g) = R�
|g dirty} = P{ eR(g) = R+

|g cleaned} = pe
(4)

P{ eR(g) = R�
|g cleaned} = P{ eR(g) = R+

|g dirty} = 1� pe
(5)

Since error happens independently at each time when agent
looks up the reward map, error occurs independently in
R(g), 8g at any time t. As the true state is hidden, the agent
has to estimate the underlying state, the estimated state is
referred to as belief states. We use bi

t
to represent it. The agent

applies Q-learning to complete floor cleaning task subject to
hidden information [9], with ✏-greedy for exploration due to
unknown floor map, while the final algorithm is summarized
as follows.exhaustive

1) Agent is randomly deployed at a free space grid which
is defined as coordinate (0, 0) in its private reference
M

i
t
, t = 0.

2) Perceives 4 surrounding grids. For all a in action set
A(bi

t
), initialize Q(bi

t
, a) = Q0 if Q(bi

t
, a) has not been

defined. Q0 is just an initial value that could be set at
any value.

3) Calculate action-value function using eRt+1 in reward
map. The tilde over eQ(b, a) indicates that it is not the
real action-value but the estimated one. 8a 2 A(bi

t
),

eQ(bi
t
, a) Q(bi

t
, a)+↵[ eRt+1+argmax

a0
Q(bi

t+1, a
0)�Q(bi

t
, a)]

(6)
where eRt+1 follows Equation (3) but subject to error as
mentioned in Equation (4); yi

t+1 follows Equation (2).
4) Let the optimal action be a⇤ = argmaxa eQ(bi

t
, a).

Choose action At following ✏-greedy policy, that is

At =

(
a⇤ with probability 1� ✏

a 6= a⇤ with probability ✏

|A(bit)|�1
.

(7)

5) Operate action At, transits to state bi
t+1, and receive

reward Rt+1. Update the action-value function

Q(bi
t
, a) Q(bi

t
, a)+↵[Rt+1+argmax

a0
Q(bi

t+1, a
0)�Q(bi

t
, a)]

(8)
6) t t+1. If all rewards on reward map is R�, meaning

that all grids have been cleaned, terminate. Otherwise,
go back to step (ii).

After experimenting a few basic types of reinforcement
learning for each agent’s actions using sensor data, Q-learning
to estimate the action-value functions turns out to be effective
and we will use as baseline learning by incorporating further
techniques, while temporal difference learning in n steps (TD-
n) suffers from no global map information.

III. ROBOT PLANNING AND LOCALIZATION

Purely relying on reinforcement learning is very ineffective
to complete the task for a large area without floor map
(i.e. public reference among collaborative agents). To tackle
this dilemma, two paradigms for planning on private reward
map will be introduced for the purpose of localization and
planning [11]–[13]. The planning algorithms are imposed on
the agent’s behavior policy. Hence the agent adopts the original
behavior policy (e.g. ✏-greedy [9]) and a planning policy
interchangeably. The first planning algorithm is called fixed
depth planning, in which agent retrieves limited part of the
information in its reward map at every decision epoch. The
second paradigm imposes switching conditions for agent to
start exhaustive planning on reward map, and thus named as
conditional exhaustive planning.

A. Fixed Length Planning
Fixed depth planning (FDP) follows a straightforward way

to exploit reward map. It checks for any existence of positive
rewards in the reward map before using ✏-greedy policy. That
is, in spite of deciding action according to the action value,
the agent first examines all grids within Manhattan distance
d and goes toward the nearest grid that has positive reward.
Manhattan distance between agent’s current location gi

a,b
and

any grid gi
p,q

is defined as

md(gi
a,b

, gi
p,q

) = |a� p|+ |b� q| (9)

Consequently, fixed length planning consolidated with Q-
learning can be summarized by augmenting an extra step 2a)
between 2) and 3) in section II-B:
2a) Let the set of grids that are reachable from bi

t
in m steps

be denoted by N
m(bi

t
). Choose At such that the proceeding

believe state b0 is getting the agent closer to a grid of positive
reward (limited to Manhattan distance d). Tie breaks evenly.
If within distance d no positive reward exists, proceed to step
3). Otherwise go to step 5).

B. Conditional Exhaustive Planning
In the scenario of floor cleaning tasks, as well as other

tasks that cope with unknown environment, trade off between
exploration (in the environment) and exploitation (accomplish

Every time the agent takes an action, besides transitioning
into next state, it also receives a real-valued reward Rt+1,
while the design of reward function is a critical part in
reinforcement learning. Given the agent’s state yi

t+1 = gi
p,q

,
its actual location can be obtained by a shift operator Ti. For
instance, if ui’s initial location with respect to realistic map
is gj,k, the operator Ti yields Ti(gip,q) = gp+j,q+k, while the
agent regards its initial location as the origin point of M

i.
Hence, for Ti(y1t+1) = ga,b, in order to encourage the robot
explore the map, we set the reward structure to be

Rt+1 =

(
R+ if ga,b has not been cleaned
R� otherwise.

(3)

R+ can be expressed as Rgood�E1. Rgood is a positive value
that encourages agent to gradually complete the cleaning task.
E1 represents the cost of moving from one grid to another.
When a grid has been cleaned, R� = �E1 as punishment.

B. Q-learning
It is ready to select baseline reinforcement learning for an

agent. Due to noisy sensing, the value on reward map eR(g)
suffers error with probability pe.

P{ eR(g) = R�
|g dirty} = P{ eR(g) = R+

|g cleaned} = pe
(4)

P{ eR(g) = R�
|g cleaned} = P{ eR(g) = R+

|g dirty} = 1� pe
(5)

Since error happens independently at each time when agent
looks up the reward map, error occurs independently in
R(g), 8g at any time t. As the true state is hidden, the agent
has to estimate the underlying state, the estimated state is
referred to as belief states. We use bi

t
to represent it. The agent

applies Q-learning to complete floor cleaning task subject to
hidden information [9], with ✏-greedy for exploration due to
unknown floor map, while the final algorithm is summarized
as follows.exhaustive

1) Agent is randomly deployed at a free space grid which
is defined as coordinate (0, 0) in its private reference
M

i
t
, t = 0.

2) Perceives 4 surrounding grids. For all a in action set
A(bi

t
), initialize Q(bi

t
, a) = Q0 if Q(bi

t
, a) has not been

defined. Q0 is just an initial value that could be set at
any value.

3) Calculate action-value function using eRt+1 in reward
map. The tilde over eQ(b, a) indicates that it is not the
real action-value but the estimated one. 8a 2 A(bi

t
),

eQ(bi
t
, a) Q(bi

t
, a)+↵[ eRt+1+argmax

a0
Q(bi

t+1, a
0)�Q(bi

t
, a)]

(6)
where eRt+1 follows Equation (3) but subject to error as
mentioned in Equation (4); yi

t+1 follows Equation (2).
4) Let the optimal action be a⇤ = argmaxa eQ(bi

t
, a).

Choose action At following ✏-greedy policy, that is

At =

(
a⇤ with probability 1� ✏

a 6= a⇤ with probability ✏

|A(bit)|�1
.

(7)

5) Operate action At, transits to state bi
t+1, and receive

reward Rt+1. Update the action-value function

Q(bi
t
, a) Q(bi

t
, a)+↵[Rt+1+argmax

a0
Q(bi

t+1, a
0)�Q(bi

t
, a)]

(8)
6) t t+1. If all rewards on reward map is R�, meaning

that all grids have been cleaned, terminate. Otherwise,
go back to step (ii).

After experimenting a few basic types of reinforcement
learning for each agent’s actions using sensor data, Q-learning
to estimate the action-value functions turns out to be effective
and we will use as baseline learning by incorporating further
techniques, while temporal difference learning in n steps (TD-
n) suffers from no global map information.

III. ROBOT PLANNING AND LOCALIZATION

Purely relying on reinforcement learning is very ineffective
to complete the task for a large area without floor map
(i.e. public reference among collaborative agents). To tackle
this dilemma, two paradigms for planning on private reward
map will be introduced for the purpose of localization and
planning [11]–[13]. The planning algorithms are imposed on
the agent’s behavior policy. Hence the agent adopts the original
behavior policy (e.g. ✏-greedy [9]) and a planning policy
interchangeably. The first planning algorithm is called fixed
depth planning, in which agent retrieves limited part of the
information in its reward map at every decision epoch. The
second paradigm imposes switching conditions for agent to
start exhaustive planning on reward map, and thus named as
conditional exhaustive planning.

A. Fixed Length Planning
Fixed depth planning (FDP) follows a straightforward way

to exploit reward map. It checks for any existence of positive
rewards in the reward map before using ✏-greedy policy. That
is, in spite of deciding action according to the action value,
the agent first examines all grids within Manhattan distance
d and goes toward the nearest grid that has positive reward.
Manhattan distance between agent’s current location gi

a,b
and

any grid gi
p,q

is defined as

md(gi
a,b

, gi
p,q

) = |a� p|+ |b� q| (9)

Consequently, fixed length planning consolidated with Q-
learning can be summarized by augmenting an extra step 2a)
between 2) and 3) in section II-B:
2a) Let the set of grids that are reachable from bi

t
in m steps

be denoted by N
m(bi

t
). Choose At such that the proceeding

believe state b0 is getting the agent closer to a grid of positive
reward (limited to Manhattan distance d). Tie breaks evenly.
If within distance d no positive reward exists, proceed to step
3). Otherwise go to step 5).

B. Conditional Exhaustive Planning
In the scenario of floor cleaning tasks, as well as other

tasks that cope with unknown environment, trade off between
exploration (in the environment) and exploitation (accomplish

2)



Department of Electrical Engineering

Robot	Panning

§ Purely	relying	on	reinforcement	 learning	is	very	 ineffective	 to	complete	
a	large-scale	mission	without	public	reference,	 which	suggests	 the	
importance	of	planning	algorithm
o Fixed	depth	planning:	agent	behavior	and	retrieving	 limited	 information	 in	

reward	map.	That	is,	the	agent	first	examines	 all	grids	within	Manhattan	
distance	d and	goes	toward	the	nearest	grid	that	has	positive	 reward.	

o Conditional	 exhaustive	 planning:	 switching	conditions	 for	agent	to	start	
exhaustive	 planning	on	reward	map,	to	strike	balance	 in	exploitation	 and	
exploration	when	public	reference	 is	not	available.
• More	importantly,	exploration	helps	to	establish	a	private	reference	and	private	

reward	map	which	become	valuable	resource	that	can	be	provided	for	others	and	for	
its	future	decision.	
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Conditional	Exhaustive	Planning

§ Conditions	 to	adopt	planning:	
Since	exploration	and	planning	
are	both	likely	to	benefit	 the	
agent’s	task,	we	consider	a	
block	size	of	NB.

§ Grassfire	 algorithm:	a	breadth-
search	 first	methods	on	grid-
based	graph,	can	effectively	 	
search	and	construct	a	path	to	
the	goal	on	a	graph	

§ Learning	NB

the agent’s major task) solidly exists. Fixed depth planning
is a typical case of constantly trying to exploit, trading
off task completion time over computation cost. When the
robot explores it has a more thorough understanding of the
environment. More importantly, exploration helps to establish
a private reference and private reward map which become
valuable resource that can be provided for others and for its
future decision. But a fully exploration behavior is very likely
to waste additional unnecessary energy and time. It is therefore
desirable to identify a reasonable condition to determine when
planning should start. And a path planning algorithm called
Grassfire algorithm, that will exhaustively search for positive
rewards on reward map, is introduced to complete the concept
of conditional exhaustive planning (CEP).

1) Conditions for Adopting Planning: Since exploration
and planning are both likely to benefit the agent’s task and thus
hard to seek a balance, we consider the undesirable situations
that one of them, either exploration or planning has worse
performance. For instance, the robot just finishes cleaning up
the entire room or to the end of a hall way. If it keeps strolling
around that same area, the exploration progress is certainly
paused. More intuitively, the agent can not proceed exploration
for a short period of time after it just cleaned up a block.

A block can be regarded as a confined area. We let the size
of a block to be NB . In our way of map representation, i.e.
grid map consists of square of unit length, an area of size
NB can be regarded as NB consecutive girds. So, whenever
the robot moves inside the block more than NB steps, it will
definitely visit some of the grids at least twice.

2) Planning Algorithm: Grassfire Algorithm: In planning,
the agent’s objective is to finish the uncleaned area to the best
of its current knowledge. There are several way to achieve
this, either to plan a path that could cover all uncleaned
grid, or search its private reference and randomly select one
grid as the next destination. However, a trade off between
exploration and exploitation (i.e. planning to clean the entire
area in private reference) is critical. To avoid repeating the
same mistakes, such as greedy exploitation in local planning,
we decide to let the agent plan moderately. Hence, the agent
is supposed to make a simple plan just for escaping the
block. The most efficient way to escape the block is to
search for and go to the nearest uncleaned grid. Grassfire
algorithm, a breadth-search first methods on grid-based graph,
can effectively yet search for goals on a graph and is able
to construct a path from starting point to the goal. Therefore,
we use Grassfire algorithm to be the planning algorithm that
helps the robot navigate to the nearest uncleaned grid. Since
Grassfire algorithm does not stop searching until finding an
unvisited grid, it is a kind of exhaustive search.

Grassfire algorithm can be implemented as a grid-based
breadth-first search (BFS) algorithm [15]. The computation
complexity will be O(|V |) where |V | is the number of nodes
(i.e. grids) in the graph. Figure 3 shows the process.

1) The starting position.
2) Start from current location to expand. Explore all neigh-

bors and check whether there is any green grid.

Fig. 3. Grassfire algorithm: breadth-first search on grid-based map, where
the yellow circle represents the current position from which we try to find a
nearest goal, i.e. green grids. Please refer to Section III-B2.

3) Since no goal is found, let the previous explored grids
become the expanded ones. An explored grid will not
be searched again.

4) Once goals are found, although here we show two goals,
the expansion process in fact undergoes in order. If it
expands from the grid labelled with 2 at the top, it will
find the upper goal first. On the contrary, if it expands
from one of those two grids labelled with 2 on the lower
right corner, it finds the goal locating at the lower half.

5) Suppose we find the lower right hand side goal. To
construct a path from origin to destination, we first trace
a path backwards and reverse it. That is, construct a path
from the goal - simply move towards the neighbor with
the smallest distance value with breaking ties arbitrarily
until arriving the origin. Then reverse the path. Figure
3 shows three shortest paths in orange line.

3) Learning NB: There is no rule to define the size of
a block NB , and the proper size of the block could be
relative to the pattern in the environment. Therefore, we
employ a reinforcement learning scheme again for the agent
to dynamically select the block size. In order to evaluate how
good a certain NB value is, first we set up a range for NB ,
that is {NB |NB 2 N, A  NB  B}. All value is initialize
as zero. V (NB) = 0, 8NB In the beginning, robot randomly
selects a value to define the block size. Once it changes from
exploration mode to planning mode, it records all rewards and
cost it collects along the path from sP to sG. But because
sG is the closest unvisited grid, the robot will not receive any
positive reward for sure. The total reward and cost is

Cost(sP , sG) = md(sP , sG)⇥ E1. (10)

Starting from the goal sG, robot also records the rewards and
cost it receives in the next NB steps. These returns collected
in the time period since arriving sG to NB steps later can be
written as

Gt(sG):t(sG)+NB
=

t(sG)+NBX

i=t(sG)+1

Ri (11)
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Grassfire	 algorithm:	 breadth-first	
search	 on	grid-based	 map,	where	
the	yellow	 circle	 represents	 the	
current	position	 from	which	we	try	
to	find	 a	nearest	goal,	 i.e.	green	grids.	
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where t(sG) represents the smallest time index when reaching
sG count from when planning started.
Having (10) and (11), the robot can online update V (NB) by

V (NB) V (NB)�↵[Gt(sG):t(sG)+NB
�Cost(sP , sG)�V (NB)].

(12)
Every time any value function of NB is modified, robot

chooses NB with the highest value function since that NB is
possible to bring more profits based on its experience. Figure 4
indicates remarkable efficiency of the Q-learning incorporating
with planning and localization, and such algorithms will be
used as baseline to consider wireless communications.

Fig. 4. Private reference planning with learning block size, where Parameters
are fixed at ✏ = 0.1,↵ = 0.1, � = 0.9, R+ = 1, R� = �0.5, Q0 = 1.

IV. MULTIPLE ACCESS COMMUNICATION FOR
COLLABORATIVE AGENTS

From earlier sections, the following lessons are critical
to disruptively consider the methodology of design wireless
robotic communications and thus NetMAS.

• As Figure 7, two robots without (wireless) communi-
cation and thus no information exchange, can not save
much time over a single robot to complete the mission.
Robots or intelligent agents suffer a sort of tragedy of
commons without proper information exchange. Wireless
communication or robotic communication is therefore so
vital to design multi-agent systems.

• A robot of reinforcement learning relies on appropriate
planning and localization to achieve efficiency. Once
multiple robots collaboratively work toward a common
mission without public reference (i.e. global floor map
in this illustration), exchange of private reference from
individual experience can be very useful, in addition to
exchange of reward-action map indicated from [8].

In this section, wireless communication will be uniquely
developed in three aspects: (i) what to communicate among
collaborative agents since such machine-to-machine commu-
nications would be quite different from well-known personal
communications (ii) advantages to adopt wireless communi-
cation in collaborative NetMAS (iii) how to design wireless
communication functionalities for collaborative agents.

A. Ideal Communication
First assume the agents communicate under ideal conditions,

that is, infinite bandwidth, error-free transmission, and perfect
coordinated multiple access among agents. The only factor
in concern is the communication range. Suppose there are
N robots operating independently, and each robot equipped
with wireless communication. At the time a robot transits to
the next state, it searches for other agents within range r.
For example, at time t two robots ui and uj are at location
vab = (a, b) and vpq = (p, q) respectively. As the state
of a robot is defined as yi

t
= vab, then any uj satisfies

yi
t
yj
t
=

p
(a� p)2 + (b� q)2  r can communicate with ui.

If more than two robots are able to communicate, say
ui, uj , uk, they can simultaneously communicate with the
two others respectively, i.e. mutual transmissions between
three pairs: ui and uj , uj and uk, uk and ui are allowed
to happen at the same time. Briefly saying, in the scenario
of ideal communication, any two agent can transmit and
receive packets perfectly as long as they lie inside others’
communication range. 8i, j 2 N : 1  i, j  N, i 6=

j, Pr
n
uj receives from ui

��yi
t
, yj

t
 r

o
= 1.

B. Information Exchange and Integration
To comprehend what to communicate among collaborative

agents, an agent’s private reference (map) can be very help-
ful to other agents. Consequently, regarding the content to
communicate, each agent shall transmit its relative location
and private reference M

i
t

(i.e. map being explored up to
now), with information of grids being visited and sensed (i.e.
corresponding state values). Furthermore, as indicated in [8],
state-value function with reward map shall be also sent. At
the receiver end(s), after obtaining external private reference
(Mj

t
, j 6= i) and experience, the robot will update the original

private reference Mi, proceeding in two stages:
1) For each grid v in M

j

t
, use vi to represent v according

to its coordinate system. If vi is not in M
i
t
, add vi

into M
i
t
. The corresponding action-value from agent

uj , Qj(vj , a), will directly substitute ui’s action-value
Qi(vi, a), 8a 2 A(vi). Due to collaboration, agent ui

trusts uj’s experience.
2) For value of each grid on ui’s reward map Ri(g), update

reward map by comparing to uj’s reward map Rj(g)
and update with the smaller value because it indicates
nonoptimal reward at that grid.

Ri(g) = min(Ri(g), Rj(g)). (13)

Figure 5 describes a two-agent case when agents can
communicate, and how they facilitate information assimilation.
Subfigure (a) is the perception of environment. Let the triangle
mark and circle mark represent agent ui and uj respectively.
Subfigure (b) plots the communication range r = 2 of each
agent. Since they are reachable from each other, they will start
to exchange information. The left part of (c), including private
reference of uj (denoted by Mj) and its relative location, are
the information sent to agent ui. As shown in (d), ui checks

Q-learning	incorporating	with	
planning	and	localization	
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for	Collaborative	Agents

§ each	agent	shall	transmit	its	relative	
location	and	private	reference	Mi,t	
(i.e.	map	being	explored	up	to	now),	
with	information	of	grids	being	
visited	and	sensed	(i.e.	
corresponding	state	values).	

§ Furthermore,	as	indicated	in	earlier	
research,	state-value	function	with	
reward	map	shall	be	also	sent.	

§ At	the	receiver	end(s),	after	
obtaining	external	private	reference	
(Mj,t	,	j	̸=	i)	and	experience,	the	
robot	will	update	the	original	
private	reference	Mi

the external message with update rule. Grids with check mark
obey rule (II), hence it will be modified as cleaned in Mi.
Part of information in Mj is new for Mi to update by rule 2).
Ultimately, agent ui possesses a private reference in (e).

Again, as shown in Figure 7, wireless communication to
exchange useful information between two robots indeed signif-
icantly improves the performance of collaborative MAS from
every aspect, while limited difference in 100% completion
time for two robots without wireless communication compared
with single robot. Without communication, two collaborative
robots pretty much work separately with repetitive efforts.

C. Random Errors
In addition to ideal communication, a more realistic scenario

is random error that cause packet drop. We assume random
error happens at each communication link independently. Any
transmission link, say from ui to uj , there is a probability
e occurring random errors resulting from interference and
noise. That is, a single directed transmission could fail with
probability e. 8i, j 2 N : 1  i, j  N, i 6= j,

Pr
n
uj receives from ui

��yi
t
, yj

t
 r

o
= 1� e.

As expected in Figure 7, random errors deteriorate the com-
pletion time compared with ideal communication. However,
the performance loss due to errors in communication is not
as significant as the case of resource-sharing MAS reported in
[8], which is not surprising since some failures to exchange
information would not create significant loss for two collabora-
tive agents in a rather large-scale and time-consuming mission.

D. Multiple Access: p-Persistent rt-ALOHA
For collaborative agents, multiple access communication in

a form of mobile ad hoc networking is more realistic, while

Fig. 5. Communication condition and information integration procedure

assuming a single communication channel being available.
Multiple agents contend this multiple access channel result-
ing collisions to lose information exchange require multiple
(or random) access protocol to coordinate transmissions. A
fundamental difference for communication among robots or
intelligent agents, compared with personal communication,
traditional throughput-delay concept can not reflect the true
need for communication, since each robot or agent must
take an action based on real-time information in each time
instant. The re-transmitted or backlogged information can be
immediately obsolete. Therefore, a modification of slotted
ALOHA, named as real-time ALOHA (rt-ALOHA) was re-
cently proposed [8], which aligns the design trend of ultra re-
liable and low-latency communication (uRLLC) by grant-free
access, no acknowledgement, and discarding re-transmission,
that could finely support multi-agent learning tasks. The rt-
ALOHA proceeds in the following procedure.

• When the channel is busy, the agent (i.e. cleaning robot)
is ready to receive immediately.

• When the channel is idle, the agent broadcasts the mes-
sage of desirable content, then immediately turns ready to
receive from others right after transmission without any
acknowledgement.

• There is no retransmission and thus backlogging.

From the study of random (packet) errors, persistent trans-
missions from N � 3 agents may create collisions and
destroy the content of multi-access communication. To ex-
change useful private reference to effectively enhance overall
performance of collaborative MAS, the p-persistent concept
can be introduced to regulate rt-ALOHA [16], to create two
operating modes to propose p-persistent rt-ALOHA borrowing
the concept from CSMA [16]:

• Proactive: if the agent senses other agents are within its
communication range and the channel is not busy, agent
broadcasts messages with probability pp.

• Reactive: When the multi-access channel is busy, the
agent stays at the reactive mode, ready to receive other’s
broadcast. When agent senses other agents are within its
communication range, agent stays at the reactive mode
with probability 1� pp.

To present overall performance of collaborative MAS using
p-persistent rt-ALOHA for multiple access communication,
two scenarios of pp = 0.1 and pp = 0.3 are selected in Figure
6. By employing more collaborative robots with appropriate
multiple access communication, the overall performance is
satisfactory, say 10 collaborative robots using p-persistent rt-
ALOHA saving around 80% time. Small pp indicates less
number of times to exchange information between agents,
and hence leads to higher variance and unpredictable system
performance, such as the case of N = 5 with r = 5
which can be worse than system performance of two agents.
Actually, pp = 0.3 shows pretty satisfactory performance for
collaborative MAS. The exact optimization or stabilization of
the proposed p-persistent rt-ALOHA is left as future research.
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p-persistent	rt-ALOHA

Latency	is	so	critical	for	information	
exchange	among	collaborative	
agents	to	suggest	 real-time	 ALOHA
§ When	the	channel	is	busy,	the	

agent	(i.e.	 cleaning	robot)	is	ready	
to	receive	 immediately.	

§ When	the	channel	is	idle,	the	
agent	broadcasts	 the	message	of	
desirable	content,	 then	
immediately	turns	 ready	to	
receive	 from	others	 right	after	
transmission	without	any	
acknowledgement.	

§ There	 is	no	retransmission	 and	
thus	backlogging.	

Borrowing	 the	concept	from	CSMA
§ Proactive:	 if	the	agent	senses	

other	agents	are	within	its	
communication	range	and	the	
channel	 is	not	busy,	agent	
broadcasts	messages	with	
probability	pp.	

§ Reactive:	When	the	multi-access	
channel	 is	busy,	the	agent	stays	at	
the	reactive	mode,	 ready	to	
receive	 other’s	broadcast.	When	
agent	senses	 other	agents	are	
within	its	communication	range,	
agent	stays	at	the	reactive	mode	
with	probability	1	−	pp.	
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Fig. 6. Performance of p-persistent rt-ALOHA (a) with pp = 0.1 (b) with
pp = 0.3 for N =2 (yellow), 5 (blue), 10 (red).

Fig. 7. Average completion time for multi-agent systems, in terms of the
percentage of mission completion, N = 2, r = 2 except the single agent
case

To have holistic understanding of the impacts from wireless
communication to collaborative MAS, Figure 7 demonstrates
the completion time from environment’s aspect. All simula-
tions are carried out with identical setting of two agents (N =
2) and communication range of two (r = 2) except for single
agent case. p-persistent real-time ALOHA with pp = 0.3,
suitable for operating with less intense communication traffic,
turns out having performance close to ideal communication.
Exchange of proper information among collaborative agents
using proper communication and networking methodology
brings in overall system performance gain, which can be
generalized to autonomous vehicles, man-robot collaboration,
smart manufacturing, and robotics in general.

Figure 7 indicates a fact that collaborative MAS without net-
working performs approximately equivalent to a single agent

no matter how many agents are operating simultaneously,
while public/global reference is not available. This verifies that
collaborative MAS not only benefit from parallel computing,
information exchange based on networking plays a key role
to boost their performance, which has been overlooked for
decades in artificial intelligence technology.

V. CONCLUDING REMARKS

It has been demonstrated in this paper that wireless commu-
nications can effectively assist collaborative agents equipped
with RL, primarily through information to enhance agents’
localization and private-reference to explore without public
reference (i.e. map), beyond the exchange of reward maps in
[8]. The scope of research can be generalized into wide-range
application scenarios such as autonomous vehicles, robots, and
smart manufacturing. It is further noted that uRLLC and multi-
ple access design can significantly influence such collaborative
NetMAS, which suggests a new research direction of machine-
to-machine communications quite different from human-to-
human personal mobile communications in past decades.
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Fig. 6. Performance of p-persistent rt-ALOHA (a) with pp = 0.1 (b) with
pp = 0.3 for N =2 (yellow), 5 (blue), 10 (red).

Fig. 7. Average completion time for multi-agent systems, in terms of the
percentage of mission completion, N = 2, r = 2 except the single agent
case

To have holistic understanding of the impacts from wireless
communication to collaborative MAS, Figure 7 demonstrates
the completion time from environment’s aspect. All simula-
tions are carried out with identical setting of two agents (N =
2) and communication range of two (r = 2) except for single
agent case. p-persistent real-time ALOHA with pp = 0.3,
suitable for operating with less intense communication traffic,
turns out having performance close to ideal communication.
Exchange of proper information among collaborative agents
using proper communication and networking methodology
brings in overall system performance gain, which can be
generalized to autonomous vehicles, man-robot collaboration,
smart manufacturing, and robotics in general.

Figure 7 indicates a fact that collaborative MAS without net-
working performs approximately equivalent to a single agent

no matter how many agents are operating simultaneously,
while public/global reference is not available. This verifies that
collaborative MAS not only benefit from parallel computing,
information exchange based on networking plays a key role
to boost their performance, which has been overlooked for
decades in artificial intelligence technology.

V. CONCLUDING REMARKS

It has been demonstrated in this paper that wireless commu-
nications can effectively assist collaborative agents equipped
with RL, primarily through information to enhance agents’
localization and private-reference to explore without public
reference (i.e. map), beyond the exchange of reward maps in
[8]. The scope of research can be generalized into wide-range
application scenarios such as autonomous vehicles, robots, and
smart manufacturing. It is further noted that uRLLC and multi-
ple access design can significantly influence such collaborative
NetMAS, which suggests a new research direction of machine-
to-machine communications quite different from human-to-
human personal mobile communications in past decades.
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Lessons
§ Wireless	communications	and	networking	can	significantly	

enhance	the	collective	performance	of	collaborative	
robots/agents/MAS	(i.e.	AI,	while	AI	computing	will	be	
limited	by	hardware)
o Latency	can	greatly	degrade	the	useful	information	among	
agents

o rt-ALOHA	is	therefore	useful	in	ultra-low	latency	communication	
and	system	reliability

o p-persistent	provides	a	means	to	adjust	multiple	access	
communication	among	agents/robots

o Application	scenarios	include	smart	factory/manufacturing,	
service	robots,	and	autonomous	vehicles.

§ Wireless	robotic	communications,	a	new	kind	of	machine-
to-machine	communications,	emerges!
o Again,	latency	and	consequently	age	of	information/data	is	
much	more	important	than	throughput	in	networking	AI.ITU	ML5G	Workshop,	Geneva,	June	17,	2019 KC	Chen,	USF	EE 48
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ML/AI	and	WC
§ ML/AI	enhances	WC
§ ML/AI	enables	WC
§ WC	enables	ML/AI

o E.	Ko,	K.-C.	Chen,	“Wireless	Communications	Meets	
Artificial	Intelligence:	An	Illustration	by	Autonomous	
Vehicles	on	Manhattan	Streets”,	IEEE	Globecom,	2018.	

o K.-C.	Chen,	H.-M.	Hung,	“Wireless	Robotic	
Communication	for	Collaborative	Multi-Agent	
Systems”,	IEEE	International	Conference	on	
Communications,	2019.	

§ Future	Network	Architecture	for	AI/ML
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COMMUNICATION	FOR	AI:	
A	NEW	TECHNOLOGY	PARADIGM
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Not	just	autonomous	vehicles,	
but	also	smart	factory,	service	robotics,	…
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