

CØSMOS

INTERNET OF BLOCKCHAINS

Shakil Muhammad

ITU Workshop on Distributed Ledger Technology Scalability and Interoperability **RNS Solutions**

www.rnssol.com

<we code your dreams/>

Generation 3

Generation 1

✓ Sovereignty

✓ Efficient state machines

✓ Customizability

Generation 2

✓ Interoperability of Dapps

 \checkmark Easier to develop

√ "1 click" deploy

✓ Scalability

✓ Fault Tolerance

✓ Sustainable

✓ Interoperability

? Privacy

Scalability Problem

Transaction verification and consensus building take longer as more participants joins in the network

Scalability issues need to be solved to put blockchain into practical use

Solutions

Anyway in the main chain, Let's reduce things to do!

Two way peg

Let's speed up Tx processing

• Layer2

- SideChains
- Plasma, Cosmos
- State Channels
- Raiden, Lightning
- Layer1
 - Sharding
 - Ethereum Sharding, Ziliqa
 - Consensus Solution by
 - Casper, Tendermint, ...

Tendermint

- Simplified and improved PBFT
- Provable liveness in partially synchronous
 network
- Safety threshold: ¹/₃ of validators' power
- 1-block finality
- Consistency-prioritizing
- Rotating proposer
- Tendermint 2.0 in progress

Nakamoto Consensus

Validation	Propagation + Mining	
Validation	Propagation + Mining	
BFT Consensus		

10 mins for btc, not lower than 15 sec for ethereum but tenermint can stretch as much as possible

1) Propose

Transaction Submission

Applications can pre-process user input into the desired commands for submission to Tendermint

Validator Node Logic

) Propose

Consensus Engine

Consensus Round Structure

A consensus round begins with a proposer, and with each node broadcasting a pre-vote, which signal that they saw or did not see, a proposal in time. Nodes wait to hear pre-votes from >2/3 of other nodes. If >2/3 is for the same block, they broadcast a pre-commit. Otherwise, they wait a little longer, and then pre-commit for a block if they saw >2/3 pre-votes for it, or else for nil. The same pattern of waiting is repeated for pre-commits. We call >2/3 pre-votes for a block Polka, and >2/3 pre-commits for a block Commit. Once committed, the block is executed by the application. If there are not >2/3 pre-commits for the same block, the block failed to commit, and a new round begins with a new proposer.

1) Propose

Node Elements

Tendermint State machine

- At each height of the blockchain a round-based protocol is run to determine the next block. Each round is composed of three steps (Propose, Prevote, and Precommit), along with two special steps Commit and NewHeight.
- The sequence (Propose -> Prevote -> Precommit) is called a round. There may be more than one round required to commit a block at a given height.

- First production grade BFT consensus engine
- Written in Go
- Handles all p2p and consensus logic
- Can handles 100s of validators at sub-5 second block times

ABCI mempool connection

Ask the application to validate the transaction before committing, Pool the Txs successfully verified

ABCI consensus connection

Perform transaction verification and state transition based on connection committed block information that is agreed upon and occurs when a new block is committed

ABCI query connection

Connections that can always be queried for the application Always available with RPC from tendermint core

Throughput

	Maximum throughput (<i>tps</i>)
Bitcoin	3,2
Ethereum	15
Ethermint	200
Tendermint	~14.000*
Visa	56.000

Depends on the number of validators and block size

Scalability

- Vertical scalability: How much *tps* can a single blockchain archive. Has a cap
- Horizontal scalability:
 Several separate and
 specialized chains that
 interact efficiently through a
 network

•

Formal specification with proofs of safety and liveness: https://arxiv.org/abs/1807.04938

Tendermint Diagram: <u>http://bit.ly/2Nfl9Vb</u>

Casper vs Tendermint: https://bit.ly/2lu4Uno

Tendermint Core Docs: https://tendermint.com/docs/

Performance Testing Results: https://bit.ly/2NKCW9n

Ethan Buchman's Masters Thesis: https://bit.ly/2S9PyoF

Bonded Proof of Stake

Proof of Stake Basics

- Use bonded tokens as resource
 limiter for determining voting power
- Eliminates wasteful energy consumption of Proof of Work
- Public permissionless system
- Solve nothing at stake problem through slashing and unbonding periods

Delegation

- Allow any token holder to be a staker by delegating to a validator
- Skin in the game
- Automatic reward distribution
- Solve stickiness issues through features such as instant redelegation and validator <u>commitments</u>

Multi Token Model

- Specialized staking token for security
- Similar to ASIC security
- Allow fees to be paid in any token to massively improve user experience

Cosmos Proof of Stake Deep Dive: https://youtu.be/XxZ04w2x4nk

> Multi Token Model Paper: http://bit.ly/2V6YZXI

Efficient Token Distribution Paper: <u>http://bit.ly/2SReAhO</u>

Cosmos SDK

Gen 1: Forked Bitcoin Codebase

 $\overline{\mathbf{Y}}$

Payments UTXO Fee by tx size Bitcoin script Proof of work

App Developer's "Zone of Control"

Gen 2: Ethereum Smart Contracts

Ether fee coin Account model Patricia tries EVM Proof of work

> App Developer's "Zone of Control"

Gen 3: Cosmos SDK

Dapp

Ð

Secure Modular Extensible Golang Proof of stake

> App Developer's **"Zone of Control"**
Application Specific Blockchains

- Reduces attack surface
- Efficiency gains due to lower computational overhead
- Fine tune to optimize for your application

Set		0x01
Remove		0x02
Get		0x03
Compare and Set		0x04
Validator Set	Change	0x05
Validator Set	Read	0x06
Validator Set	CAS	0×07

Cosmos SDK: Developer Friendly

• Written in Go

- Like Ruby-on-Rails for building blockchains
- Completely open source and available on GitHub
- Secured by the principal of least authority

Cosmos SDK: Modular & Extensible

- Modular architecture for plug-and-play development
- Simply plug ready-built modules to add features to your blockchain
- Build new modules and share them downstream to enrich and contribute to the Cosmos-SDK ecosystem

Modular Blockchains

SDK + Peggy == Cosmos Hub

EVM + Shared Security == Ethermint

Microservices == IRIS Network

Rep, Auctions, BW Fees == LINO

Peggy + Plasma == Fourth State

What Will You Build?

Own App

- 1. Design the application.
- 2. Begin the implementation of your application in ./app.go.
- 3. Start building your module by defining some basic Types.
- 4. Create the main core of the module using the Keeper.
- 5. Define state transitions through Msgs and Handlers.

SetName

BuyName

- 6. Make views on your state machine with Queriers.
- 7. Register your types in the encoding format using sdk.Codec.
- 8. Create CLI interactions for your module.
- 9. Create HTTP routes for clients to access your nameservice
- 10. Import your module and finish building your application!
- 11. Create the nsd and nscli entry points to your application.
- 12. Setup dependency management using dep.
- 13. Build and run the example.
- 14. Run REST routes.

Cosmos SDK Tutorial: https://cosmos.network/docs/tutorial/

Cosmos SDK Repo: https://github.com/cosmos/cosmos-sdk

The Case for Application Specific Blockchains: <u>http://bit.ly/2SMiCI7</u>

Amino

- Improvement to Protobuf standard
- Naturally support interfaces instead of OneOf
- Deterministic
- Generate proto files from Go code

amino.RegisterInterface((*MyInterface1)(nil), nil)
amino.RegisterInterface((*MyInterface2)(nil), nil)
amino.RegisterConcrete(MyStruct1{}, "com.tendermint/MyStruct1", nil)
amino.RegisterConcrete(MyStruct2{}, "com.tendermint/MyStruct2", nil)
amino.RegisterConcrete(&MyStruct3{}, "anythingcangoinhereifitsunique", nil)

Amino

IAVL+ Tree

- Self-balancing AVL tree
- All values are stored at leaves
- Immutable with snapshots and caching
- All operations log(N)
- No hashing keys required

writing down, my checksum waiting for the, data to come no need to pray for integrity thats cuz I use, a merkle tree

grab the root, with a quick hash run if the hash works out, it must have been done

theres no need, for trust to arise thanks to the crypto now that I can merkleyes

take that data, merklize ye, I merklize ...

then the truth, begins to shine the inverse of a hash, you will never find and as I watch, the dataset grow producing a proof, is never slow

Where do I find, the will to hash How do I teach it? It doesn't pay in cash Bitcoin, here, I've realized Thats what I need now, cuz real currencies merklize -EB

Crypto

- Cryptography library with builtin Amino support
- Abstracted multisignature pubkeys
- BGLS Aggregate Signature
 implementations
- BGLS verifier in EVM

Go-Amino Repo: https://github.com/tendermint/go-amino

IAVL+ Repo: https://github.com/tendermint/iavl

BGLS Repo: https://github.com/Project-Arda/bgls

Alternative Frameworks for state machine

1. Install

\$ npm install lotion

2. Write your state machine

3. Run it and query the state

\$ node app

in another terminal:

\$ npx lotion-cli state <GCI>

IOV Weave

- Fork of the Cosmos SDK maintained by IOV
- Simpler version of the SDK with more limited features
- Second Go Framework

Potential Future Frameworks

Alternative Frameworks Learn More!

LotionJS

Lotion JS Repo: https://github.com/nomic-io/lotion

Weave Repo: https://github.com/iov-one/weave

Ethermint

Module: Ethereum Virtual Machine

EVM in the Cosmos SDK module interface

- Account database, state tree
- EVM module can run Ethereum txs
- EVM module calls into Cosmos
 SDK modules
- Shared state view one token

Ethermint: Cosmos SDK + EVM

Best of both worlds

- Scalability of Tendermint
- Power of the Cosmos SDK
- Existing ecosystem of
 Ethereum contracts, dev
 tooling

EVM module from TurboGeth

- DB performance improvements
- Flexible SDK module interface

Two Ways to Use EVM Module

Ethermint as a blockchain

- Cosmos PoS chain for smart contracts

EVM as a library

- Deploy your own Cosmos chain with EVM support
- Add in other SDK modules or write your own
- Flexibility in token choice & economic model

Ethermint as a Blockchain

One chain for many EVM applications

- Hard spoon of account balances
- Sovereign chain, own token
- Governance, staking, slashing
- Fully web3 compatible
- IBC connections to other chains

EVM Module for SDK Zones

EVM module for your Tendermint/Cosmos chain

- Full EVM functionality set
- Include other Cosmos SDK modules
- Utilize existing Solidity contracts
- Gradually port parts of logic to native code

Ethermint 2.0

- EVM client built using the Cosmos SDK
- Will be fully Web3 compatible
- Can deploy existing Ethereum dapps / smart contracts
- Can add your own precompiles
- Working with TurboGeth team to build and optimize

Ethermint Learn More!

Ethermint DevCon Presentation: https://youtu.be/VCLbS10ks8A

Ethermint Repo: https://github.com/cosmos/ethermint

Inter Blockchain Communication

Cosmos IBC

Chain A and chain B are light clients of each other.

IBC Packet (kinda like TCP/IP):
1. Prove the hash commit w/ signatures
2. Prove the packet w/ Merkle proof

Or, IBC State proves state.

ChainFoo

.

...

...

ChainBar

Cosmos IBC

Commit Message

ChainFoo Block Hash 92

Commit for 92

Packet Message

ChainFoo Block Hash 92

packet9: send 9stake to Bob

Message Relayer
Horizontal Scalability

- Application-based sharding is logical as it minimizes bottleneck
- You only have to be a full node for applications you care about

Packet Types

- Equivalent to Application Layer in Internet stack
- Different types of packet structures/handling protocols
- Token Transfers
- Non Fungible Assets
- Data
- Agoric ERTP

IBC

IBC Learn More!

ZK Summit IBC Presentation: https://youtu.be/cjfYThAk06w

EdCon IBC Presentation: https://youtu.be/enPetlum0d0

IBC Webinar: https://youtu.be/m_b_Noe70Vc

Cosmos Hub Learn More!

CESC Interchain Scaling Presentation: https://youtu.be/D4Q-gA_kPrU

PolkaDot vs Cosmos: https://forum.cosmos.network/t/polkadot-vs-cosmos/1397

> Cosmos Intro: https://cosmos.network/intro

Learn more

tendermint.com

cosmos.network

CØSMOS INTERNET OF BLOCKCHAINS

0

(🔶)

Comparison

	COSMOS	POLKADOT		
Consensus	Tendermint (BFT)	GRANDPA/BABE		
Governance	Validator/Delegator Vote	Referendum and Council representing stakeholders		
Models	Hub and Zones	Relay chain and parachains		
Security	Each zone has its own security	Pooled security	Sove	reignty*
Native token	Atom	Dot		

*Polkadot substrate can be used as library in Cosmos base Chain

runtime

governance dao

staking slashing csprng

parachains permissions/

smartcontracts

webassembly

consensus

libp2p

Written in Rust

Built into both Wasm & native

Wasm stored on-chain

Written in Rust

Built into native

Contact Us

Shakil Muhammad

-

Chairman

+82-10-3347-7860

shakil@rnssol.com

shakilphd@kaist.ac.kr

www.rnssol.com

Shehroze Rao

÷

Cheif Executive Officer

+92-323-5222-321

shehroze@rnssol.com

contact@rnssol.com

PAKISTAN OFFICE Office #7, 3rd floor, Satellite plaza, 6th road Rawalpindi, Pakistan SINGAPORE OFFICE 531 A Upper Cross Street #04-95, Hong Lim Complex, Singapore

Global Stabilization Time, GST

Validity Predicate-based Byzantine consensus

t ≥ GST