S 0OLUTIONS

CHSMOS

INTERNET OF BLOCKCHAINS

RNS Solutions

www.rnssol.com
Shakil Muhammad <we code your dreams/>

TU Workshop on Distributed Ledger Technolog
Scalability and Interoperability

http://www.rnssol.com/

Generation 3

Generation 1 Generation 2 Scalability
Sovereignty Interoperability of Dapps
_ Fault Tolerance
Efficient state machines Easier to develop
Customizability “1 click” deploy Sustainable

Interoperability

? Privacy

Scalability Problem

Transaction verification and consensus building take longer as more participants joins in the network

Block Hash Block Hash Block Hash

Transaction Info Transaction Info Transaction Info

Scalability issues need to be solved to put
blockchain into practical use

Anyway in the main chain, Let's reduce things to do!

Solutions
Two way peg
 Layer2 \
 SideChains :
« Plasma, Cosmos Slockehain @

« State Channels
« Raiden, Lightning

 Layerl
e Sharding
 Ethereum Sharding, Ziliga ABCl-application

« Consensus Solution by
« Casper, Tendermint, ...

11 tools

Z

Ethermint Monetary

Experiments

Tendermint Cosmos SDK IBC

LﬂﬁonJS

Voyager Proof of Stake Alternative Frameworks Low Level Libs

Tendermint

APACHE

Tendermint Core

APPLICATION
PLATFORMS

SOCKET

y

PROTOCOLS

SECURITY & NETWORKING
PLATFORMS

Your State Machine

ABCI

Tendermint

Tendermint BFT

Simplified and improved PBFT

Provable liveness in partially synchronous
network

Safety threshold: s of validators’ power
1-block finality

Consistency-prioritizing

Rotating proposer

Tendermint 2.0 in progress BLS aggregator, pipelining

@& Tendermint BFT

Nakamoto Consensus

Validation Propagation + Mining

Validation Propagation + Mining

BFT Consensus

Validation Propagation

Validation Propagation

10 mins for btc, not lower than 15 sec for ethereum but tenermint can stretch as much as
possible

Transaction Submission
Applications can pre-process user input into the

desired commands for submission to Tendermint -

> Mempool

Cache

Before being accepted
into the mempool,
transactions are verified
by the application using
CheckTx

. c’ted Pass

User Input

Mempool

ABCI Application Logic

Transactions in the mempool are broadcasted to other

Non-ABCI Application Logic s . . .
peers and are eligible for inclusion in a block

Tendermint Core Logic

Validator Node Logic

Consensus Engine

New node
Proposer selects designated to

transactions from the propose a
mempool for inclusion in ! Proposer

the proposed block Node Broadcast
proposed
block

. k or
‘ nvalid bloc .
Nodes ‘t\meout reached Pre-Vote Nil
Gossip L=
Valid Block) Pre-Vote Block

>2/3 nodes do T\ot Y
same block & UmMe Pre-commit Nil
Gossip

Pre-Vote consensus round
Each node broadcasts a
pre-vote and listens for
pre-vote from other nodes

| .

Pre-Commit consensus round

. >2/3
Each node broadcasts its block N0des pre-yote for — Pre-commit Block
resulting pre-vote response and

) x £0(
listens for the responses from 4o not pre_m“
3 nodes ac\’\ed
Network SR 7bz\ick or timeout € No Commit
P2P Nodes
52/3 —_ Commit Block Height
nodes pre-commit Increase
for block
- ABCI Application Logic $
\Nn________ 4

Once a block has been committed it is applied

to the application in a series of ABCl messages,

- Tendermint Core Logic which the application can use to update its
state in any number of ways, for instance by

changing the balance of some number of
- Validator Node Logic
accounts

Non-ABCI Application Logic
Application
Handling

—

Consensus Round Structure

A consensus round begins with a proposer, and with each node broadcasting a pre-vote, which signal that they saw or did not see, a
proposal in time. Nodes wait to hear pre-votes from >2/3 of other nodes. If >2/3 is for the same block, they broadcast a pre-commit.
Otherwise, they wait a little longer, and then pre-commit for a block if they saw >2/3 pre-votes for it, or else for nil. The same pattern of
waiting is repeated for pre-commits. We call >2/3 pre-votes for a block Polka, and >2/3 pre-commits for a block Commit. Once
committed, the block is executed by the application. If there are not >2/3 pre-commits for the same block, the block failed to commit,
and a new round begins with a new proposer.

Replica
Node 1

Replica Replica
Node 5 Node 2

Replica
Node 3

Proposer
Node 4

- ABCI Application Logic

Non-ABCI Application Logic

Node on Node Communication
Each broadcast across the network uses a secure

S Proposer Node Rotation P2P encryption protocol. Additionally, all vote and
- & Each round a new node is designated to proposal messages include a Validator Signature to

propose a new block. This occurs in a VI RS T SSEler S ey

- Validator Node Logic repeating order.

e |
e |

| —
Validator

ABCI Application Logic

Non-ABCI Application Logic

Tendermint Core Logic

Validator Node Logic

il

Local
Mempool

Blockchain

Used to validate
mempool
transactions
Used only when
a new block is

:
E

committed

Used to query the
application without
engaging consensus

|

Block = ABCl = The state provides info
Proposal
Logic

for the Mempool and
; Query Connection, but
/is only written to by the
" Consensus Connection.

Application

Mempool
Collection

Consenslis
Connection

Connection

e At each height of the blockchain a
round-based protocol is run to
determine the next block. Each round is
composed of three steps (Propose,
Prevote, and Precommit), along with two
special steps Commit and NewHeight.

o The sequence (Propose -> Prevote ->
Precommit) is called a round. There
may be more than one round required to
commit a block at a given height.

| || Built with Cosmos SDE
| sState-machine = Application | |
| | v

Tendermint Core

s - - - — — — — — — — — 3

s
]
~+
=
]
=
-
(=
=
am
- — — — — — —

1) Propose

New
Height Propose

New Round

Tendermint
BFT

1) Propose

New
Height Propose
valid block
invalid block
or not received
In time

- 2) Pr

New Round Pre-vote Nil Propose Block

Wait for
no +2/3 pre-votes
pre-vote from +2/3
for block

+2/3
pre-vote

for block Polka

Tendermint
BFT

1) Propose

Propose

valid block
invalid block
or not received

i 2) Pre:vote

Commit New Round Pre-vote Nil Propose Block

no +2/3
pre-commit
for block
Wait for Wait for
pre-commits no +2/3 pre-votes
from +2/3 pre-vote from +2/3
for block

Pre-commit Nil

+2/3
+2/3 A pre-vote
pre-commit

CO mm |t for block for block POI ka

Propose Block

Tendermint
BFT

& Tendermint Core

First production grade BFT
consensus engine

Writte n i n G O TxResult

TxResult

StateRoot

Proposer

Handles all p2p and

consensus logic .A.
Can handles 100s of i

validators at sub-5 second Commi
block times

ABCI| mempool connection

Ask the application to validate the transaction before committing,
Pool the Txs successfully verified

CheckTx

N

TxResult
ABCI Application Logic Consensus engine
Keep verified transactions
Non-ABCI Application Logic Flush when held Tx is committed

Tendermint Core Logic

Validator Node Logic

ABCI consensus connection

Perform transaction verification and state transition based on connection committed block
information that is agreed upon and occurs when a new block is committed

n' p

Begi_nBIock Request status update via Tx agreed on by Tendermint on
Del!verTx DeliverTx request Make Commit request after DeliverTx
DeliverTx process
EndBlcok

Commit
________/

\

TxResult is returned as the return value of E
DeliverTx request TxResult
Return state root after state update as return TxResult
value of Commit (next
(Including header to block of) StateRoot

. J

ABCI query connection

Connections that can always be queried for the application
Always available with RPC from tendermint core

RPC

Example: Search
connection peer etc.

Throughput

Maximum
throughput (tps)

Bitcoin

Ethermint

Tendermint | ~14.000*
Visa 56.000

* Depends on the number of validators and block size

Transaction Throughput (txs/second)

16000

e—e 2 vals
14000 |-| ®—e 4 vals
e—e 38 vals
12000 || @ 16 vals
e—e 32 vals
64 vals

10000} © ©

8000

6000

4000 |

2000 +

103

T 10°
Block size (number of transactions)

10°

Vertical scalability: How
much tps can a single
blockchain archive. Has a cap

Horizontal scalability:
Several separate and
specialized chains that
Interact efficiently through a
network

Vertical

Horizonta

Tendermint BFT Learn More!

Formal specification with proofs of safety and liveness:
https://arxiv.org/abs/1807.04938

Tendermint Diagram:
http://bit.ly/2Nfl9Vb

Casper vs Tendermint:
https://bit.ly/2lu4Uno

http://bit.ly/2Nfl9Vb

s) Tendermint Stack

l Socket Endpoint

. HTTP REST

Protobut Binary with
Length Prafix

> HTTP Amino JSON

Authenticated Encryption
with Amino Encoding

] P2P NETWORK

Full Node

Light Node

‘\'.'[v" cosSMos. naetwork "775': ;,;l--l.j,_.::." nN.Con

Tendermint Core Learn More!

Tendermint Core Docs:
https://tendermint.com/docs/

Performance Testing Results:
https://bit.ly/2NKCW9n

Ethan Buchman’s Masters Thesis:
https://bit.ly/2S9PyoF

Bonded Proof of Stake

« Use bonded tokens as resource
limiter for determining voting power

« Eliminates wasteful energy
consumption of Proof of Work

« Public permissionless system
« Solve nothing at stake problem

through slashing and unbonding
periods

« Allow any token holder to be a
staker by delegating to a validator

o Skin in the game

o Automatic reward distribution

« Solve stickiness issues through
features such as instant
redelegation and validator
commitments

Multi Token Model

. Specialized staking token for
security

. Similar to ASIC security
. Allow fees to be paid in any

token to massively improve
user experience

v Proof of Stake Learn More!

Cosmos Proof of Stake Deep Dive:
https://youtu.be/XxZ04w2x4nk

Multi Token Model Paper:
http://bit.ly/2VEYZXI

Efficient Token Distribution Paper:
http://bit.ly/2SReAhQO

http://bit.ly/2V6YZXI
http://bit.ly/2SReAhO

P

@

‘v

Cosmos SDK

Gen 1: Forked Bitcoin Codebase

Payments
UTXO

Fee by tx size
Bitcoin script
Proof of work

App Developer’s
“Zone of Control”

Gen 2: Ethereum Smart Contrackts

Ether fee coin
Account model
Patricia tries
EVM

Proof of work

App Developer’s
“Zone of Control”

Gen 3;: Cosmos SDK

Secure
Modular
Extensible
Golang

Proof of stake

- App Developer’s
“Zone of Control”

Application Specific Blockchains

« Reduces attack surface

« Efficiency gains due to lower
computational overhead

« Fine tune to optimize for your
application

Set

Remove

Get

Compare and Set
Validator Set Change
Validator Set Read
Validator Set CAS

Cosmos SDK: Developer Friendly

 Written in Go

- Like Ruby-on-Rails for building S
blockchains Accounts Staking
\ '
* Completely open source and Rewards Slathing
available on GitHub Qe
— IBC —
 Secured by the principal of least Re . —

authority

Cosmos SDK: Modular & Extensible

» Modular architecture for
plug-and-play development

 Simply plug ready-built modules to
add Features to your blockchain

 Build new modules and share them
downstream to enrich and contribute
to the Cosmos-SDK ecosystem

N

{

Accounts

RENET S
& Fees

R

_ Governance

Staking

S E e

Modular Blockchains

SDK + Pegg == COosSmMos Hub

B
ML

CHSMOS

cosmos.network &

EVM + Shared Security == Ethermint

github.com/cosmos/ethermint

Microservices == |IRIS Network

" 1
(@ irisnet

Rep, Auctions, BW Fees == LINO

LIN®

lino.network

Peggy + Plasma == Fourth State

fourthstate.network .

What Will You Build?

Transaction relayed from
Tendermint via DeliverTx

Message routed to the correct module to
be processed

Return result to Tendermint (0=0k, 1=Err)

Transaction relayed from
Tendermint via DeliverTx

Message routed to the correct module to
be processed

Return result to Tendermint (0=0k, 1=Err)

Own App

O b~ wWN P

0 N O

9.

. Design the application.

. Begin the implementation of your application in ./app.go.
. Start building your module by defining some basic Types.
. Create the main core of the module using the Keeper.

. Define state transitions through Msgs and Handlers.

SetName
BuyName

. Make views on your state machine with Queriers.
. Register your types in the encoding format using sdk.Codec.
. Create CLI interactions for your module.

Create HTTP routes for clients to access your nameservice

10. Import your module and finish building your application!
11. Create the nsd and nscli entry points to your application.
12. Setup dependency management using dep.

13. Build and run the example.

14. Run REST routes.

Cosmos SDK Learn More!

Cosmos SDK Tutorial:
https://cosmos.network/docs/tutorial/

Cosmos SDK Repo:
https://github.com/cosmos/cosmos-sdk

The Case for Application Specific Blockchains:
http://bit.ly/2SMICI7

http://bit.ly/2SMiCI7

Low Level Libs

Amino

o Improvement to Protobuf standard e
| | AMmino

« Naturally support interfaces instead of OneOf

o Deterministic

o Generate proto files from Go code

.RegisterInterface((*MyInterfacel)(nil), nil)
.RegisterInterface((xMyInterface2)(nil), nil)

.RegisterConcrete(MyStructl{}, "com.tendermint/MyStructl", nil)
.RegisterConcrete(MyStruct2{}, "com.tendermint/MyStruct2", nil)
.RegisterConcrete(&MyStruct3{}, "anythingcangoinhereifitsunique", nil)

writing down, my checksum
waiting for the, data to come
no need to pray for integrity

IAVL+ Tree thats cuz I use, a merkle tree

grab the root, with a quick hash run
if the hash works out,
it must have been done

Self-balanC”']g AVL tree theres no need, for trust to arise

thanks to the crypto
now that I can merkleyes

All values are stored at leaves ke it Gt nediiin

ye, I merklize ...

Immutable with snapshots and then the truth, begins to shine

. the inverse of a hash, you will never find
(351(3r1|r]§3 and as I watch, the dataset grow

producing a proof, is never slow

A\l OperatiOnS |Og(N) Where do I find, the will to hash

How do I teach it?
It doesn't pay in cash

NO haSh|ng keys reCIUII’ed Bitcoin, here, I've realized

Thats what I need now,

cuz real currencies merklize
-EB

Crypto
Cryptography library with built-
INn AMINo support

Abstracted multisignature . Sl FHim)
pubkeys

BGLS Aggregate Signature
Implementations

BGLS verifier in EVM

Low Level Libs Learn
More!

Go-Amino Repo:
https://github.com/tendermint/go-amino

|AVL+ Repo:
https://github.com/tendermint/iavl

BGLS Repo:
https://github.com/Project-Arda/bgls

Alternative Frameworks

for state machine

1. Install

E npm install lotio

2. Write your state machine

lotion

t app = lotion(4
initialState: |
count: @

e(function(state, tx) {
(state.count tx.nonce)
state.count+4

ion(appInfo)
console. log{ app started.

3. Run it and query the state

$ node app
in another terminal:

$ npx lotion-cli state <GCI>

I

s{appInfo.GCI}

IOV Weave

Fork of the Cosmos SDK
maintained by IOV

Simpler version of the SDK
with more limited features

Second Go Framework

Potential Future Frameworks QP L
. Chainmint

A\l
,
\"\.
",
Y
s

7 parity substrate .g&k'«. NERVOS

|/

"'>.< < CKB

<« HYPERLEDGER

XY FABRIC Bhemnit

Alternative Frameworks
Learn More!

Lotion JS Repo:
https://github.com/nomic-io/lotion

Weave Repo:
https://github.com/iov-one/weave

Ethermint

Module: Ethereum Virtual Machine

EVM in the Cosmos SDK module
interface

- Governance
- Account database, state tree RN\

- EVM module can run Ethereum

txs e \",9'(@)

. ’ R ards ' . N
- EVM module calls into Cosmos N M&;pees

SDK modules L BG
- Shared state view - one token |

B Staking

Best of both worlds

- Scalability of Tendermint

- Power of the Cosmos SDK

- Existing ecosystem of
Ethereum contracts, dev
tooling

EVM module from TurboGeth

- DB performance improvements Solidity Truffle -
- Flexible SDK module interface

Two Ways to Use EVM Module

Ethermint as a blockchain

- Cosmos PoS chain for smart contracts
EVM as a library

- Deploy your own Cosmos chain with
EVM support

- Add in other SDK modules or write your
own

- Flexibility in token choice & economic
model

Ethermint as a Blockchain

One chain for many EVM
applications

- Hard spoon of account
balances

- Sovereign chain, own token

- Governance, staking, slashing

- Fully web3 compatible

- IBC connections to other chains

Solidity

Truffle

EVM Module for SDK Zones

EVM module for your
Tendermint/Cosmos chain

- Full EVM functionality set

- Include other Cosmos SDK
modules

- Utilize existing Solidity
contracts

- Gradually port parts of logic to
native code

Ethermint 2.0

. EVM client built using the Cosmos

SDK

. WIll be fully Web3 compatible

. Can deploy existing Ethereum
dapps / smart contracts

. Can add your own precompiles

. Working with

urboGeth team to

build and optimize

Ethermint Learn More!

Ethermint DevCon Presentation:
https://youtu.be/VCLbS10Oks8A

Ethermint Repo:
https://github.com/cosmos/ethermint

Inter Blockchain Communication

Message 1:
CommitMsg

Chain A Blockhash #100
Commit for #100

Precommit Signature Val A

Precommit Signature Val C
Precommit Signature Val D

Precommit Signature Val E

> #103.-

— #73

Message 2:
CommitMsg
>
y
\]] ? Ly
hash 1-2
\J Y
hash 4
i.
Y

Key: "packet 9"
Value: 99 steak to Bob

| Cosmos IBC

Chain A and chain B are light clients of each other.

IBC Packet (kinda like TCP/IP):
1. Prove the hash commit w/ signatures
2. Prove the packet w/ Merkle proof

Or, IBC State proves state.

ChainFoo ChainBar

Cosmos IBC \
73

Commit Message * >
-} ChainFoo Block Hash 92 '\ 74
S @) -

: N

5 ~&
“un ’ ChainFoo Block Hash 92 7 6
packet9: send 9stake to Bob l/
S

Message

Relayer
Packet Message Y

Horizontal Scalability

. Application-based sharding
IS logical as It minimizes
bottleneck

. You only have to be a full

node for applications you
care about

Equivalent to Application Layer in Internet stack

Different types of packet structures/handling protocols
. Token Transfers
. Non Fungible Assets
. Data
. Agoric ERTP

)

&)

IBC Learn More!

ZK Summit IBC Presentation:
https://youtu.be/cjfY ThAkO6w

EdCon IBC Presentation:
https://youtu.be/enPetlum0dO

IBC Webinar:
https://youtu.be/m_b Noe70Vc

IBC IBC

IBC i IBC

1BC ‘ IBC
e)

<

s N
G\ v
-.\ Q‘
N 7 B\ N ;
= =1 :\
) <&

[=)

Ethermint

Bitcoin

B Py 2ame

By
/
, Ethereum

. (@

Validators

Delegators

Cosmos Network

Peggy Ethereum

Relayer IRZZERACULEICIE
have signed

Mint ERC20
Photons

Peg)
) Signer
Zone) g

secp256k1
signature

waits for 100
blocks

Logs events

ChainFoo
~ Sovereign

Sovereign Security

IBC

ChainBar

Sovereign

ChainFoo1, ChainFoo2

Replicas

ChainFoo

- Replicated Shared
- Security

IBC

o AN

3 Cosmos Hub Learn More!

®

CESC Interchain Scaling Presentation:
https://youtu.be/D4Q-gA kPruU

PolkaDot vs Cosmos:
https://forum.cosmos.network/t/polkadot-vs-cosmos/1397

Cosmos Intro:
https://cosmos.network/intro

Learn more

tendermint.com

cosmos.network

Comparison

COSMOS POLKADOT
Consensus Tendermint (BFT) GRANDPA/BABE
Governance Validator/Delegator =~ Referendum and Council representing
Vote stakeholders
Models Hub and Zones Relay chain and parachains
Security Each zone has its own Pooled security S ionty*
security overeignty
Native token Atom Dot

*Polkadot substrate can be used as library in Cosmos base Chain

runtime

Y
governance dao \ \ Written in Rust
stakingslashing csprng) | Built into both Wasm &
. . | native
parachains permissions/
contracts | /
webassembly
Written in
consensus Rust

Built into

native

Contact Us

=

i{ ~ [

4

J

OOy

Shakil Muhammad Shehroze Rao

+82-10-3347-7860

Chairman E Cheif Executive Officer
t +92-323-5222-321
>l

shakil@rnssol.com

shakilphd @kaist.ac.kr

shehroze@rnssol.com

www.rnssol.com "‘;'1 contact@rnssol.com

PAKISTAN OFFICE

Office #7, 3rd floor, Satellite plaza, 6th road Rawalpindi, Pakistan
SINGAPORE OFFICE
531 A Upper Cross Street #04-95, Hong Lim Complex, Singapore

pl

p2

p3

pa

Global Stabilization Time, GST

t > GST

Validity Predicate-based Byzantine consensus

