
\

Shakil Muhammad
www.rnssol.com

RNS Solutions

<we code your dreams/>

ITU Workshop on Distributed Ledger Technology

Scalability and Interoperability

http://www.rnssol.com/

Generation 1

✓ Sovereignty

✓ Efficient state machines

✓ Customizability

✓ Interoperability of Dapps

✓ Easier to develop

✓ “1 click” deploy

Generation 2

Generation 3

✓ Scalability

✓ Fault Tolerance

✓ Sustainable

? Privacy

✓ Interoperability

Scalability Problem

Scalability issues need to be solved to put

blockchain into practical use

Transaction verification and consensus building take longer as more participants joins in the network

Block Hash

Transaction Info

Block Hash

Transaction Info

Block Hash

Transaction Info

Solutions

• Layer2

• SideChains

• Plasma, Cosmos

• State Channels

• Raiden, Lightning

• Layer1

• Sharding

• Ethereum Sharding, Ziliqa

• Consensus Solution by

• Casper, Tendermint, …

Blockchain Sidechain

Two way peg

Anyway in the main chain, Let's reduce things to do!

Let's speed up Tx processing

Tendermint Cosmos SDK IBC

Proof of Stake

Ethermint Monetary

Experiments
Cosmos Hub Sample

Zones

Low Level LibsAlternative FrameworksVoyager

11 tools

Tendermint

SECURITY & NETWORKING

PLATFORMS

Tendermint

APPLICATION

PLATFORMS

SOCKET PROTOCOLSCGI ABCI

Your State Machine

Tender mint Core

Tendermint BFT

● Simplified and improved PBFT

● Provable liveness in partially synchronous

network

● Safety threshold: ⅓ of validators’ power

● 1-block finality

● Consistency-prioritizing

● Rotating proposer

● Tendermint 2.0 in progress BLS aggregator, pipelining

Tendermint BFT

10 mins for btc, not lower than 15 sec for ethereum but tenermint can stretch as much as
possible

1) Propose

3) Pre-commit

1) Propose

User Input

Pass

Mempool

CheckTx

Mempool
Cache

Application
Handling

Pre-Tendermint
Processing

Transaction Submission
Applications can pre-process user input into the
desired commands for submission to Tendermint

Before being accepted
into the mempool,
transactions are verified
by the application using
CheckTx

Transactions in the mempool are broadcasted to other
peers and are eligible for inclusion in a block

ABCI Application Logic

Non-ABCI Application Logic

Tendermint Core Logic

Validator Node Logic

1) Propose
Consensus Engine

Application
Handling

Height
Increase

BeginBlock.
[DeliverTx],
EndBlock,
Commit,

New
Round

Proposer
Node

Pre-Vote Block

No Commit

Nodes
Gossip

Nodes
Gossip

Nodes
Gossip

Pre-commit Nil

Pre-Vote Nil

Commit Block

Pre-commit Block

New node
designated to
propose a
block

Proposer selects
transactions from the

mempool for inclusion in
the proposed block Broadcast

proposed
block

Pre-Vote consensus round
Each node broadcasts a
pre-vote and listens for
pre-vote from other nodes

Pre-Commit consensus round
Each node broadcasts its
resulting pre-vote response and
listens for the responses from
other nodes

Once a block has been committed it is applied
to the application in a series of ABCI messages,
which the application can use to update its
state in any number of ways, for instance by
changing the balance of some number of
accounts

Network
P2P Nodes

ABCI Application Logic

Non-ABCI Application Logic

Validator Node Logic

Tendermint Core Logic

Consensus Round Structure
A consensus round begins with a proposer, and with each node broadcasting a pre-vote, which signal that they saw or did not see, a
proposal in time. Nodes wait to hear pre-votes from >2/3 of other nodes. If >2/3 is for the same block, they broadcast a pre-commit.
Otherwise, they wait a little longer, and then pre-commit for a block if they saw >2/3 pre-votes for it, or else for nil. The same pattern of
waiting is repeated for pre-commits. We call >2/3 pre-votes for a block Polka, and >2/3 pre-commits for a block Commit. Once
committed, the block is executed by the application. If there are not >2/3 pre-commits for the same block, the block failed to commit,
and a new round begins with a new proposer.

Proposer Node Rotation
Each round a new node is designated to
propose a new block. This occurs in a
repeating order.

Replica
Node 1

Proposer
Node 4

Replica
Node 3

Replica
Node 2

Replica
Node 5

Nodes
Gossip

Node on Node Communication
Each broadcast across the network uses a secure
P2P encryption protocol. Additionally, all vote and
proposal messages include a Validator Signature to
verify the message’s authenticity.

ABCI Application Logic

Non-ABCI Application Logic

Tendermint Core Logic

Validator Node Logic

1) Propose

CheckTx

BeginBlock.
[DeliverTx],
EndBlock,
Commit,

Query Info

Other
elements
[GUI, etc.]

Node Elements

Validator

Block
Proposal

Logic
BlockchainLocal

Mempool

Used to query the
application without
engaging consensus

Consensus
Connection

ABCI
Application

Mempool
Collection

Block
Transactions

TX1: set[btc,99]
TX2: set[eth,10]
TX3: set[usd,15]

Blockchain

Height1: Block-0 & Hash-0
Height2: Block-1 & Hash-1
Height3: Block-2 & Hash-2

Used only when
a new block is
committed

The state provides info
for the Mempool and
Query Connection, but
is only written to by the
Consensus Connection.

State

Btc=99
Eth=10
Usd=15

…
Query

Connection

Used to validate
mempool
transactions

ABCI Application Logic

Non-ABCI Application Logic

Validator Node Logic

Tendermint Core Logic

Tendermint State machine

● At each height of the blockchain a

round-based protocol is run to

determine the next block. Each round is

composed of three steps (Propose,

Prevote, and Precommit), along with two

special steps Commit and NewHeight.

● The sequence (Propose -> Prevote ->

Precommit) is called a round. There

may be more than one round required to

commit a block at a given height.

Tendermint

BFT

1) Propose

Polka

Tendermint

BFT

2) Pre-vote

1) Propose

Tendermint

BFT

Commit Polka

2) Pre-vote

1) Propose

3) Pre-commit

Tendermint Core

● First production grade BFT
consensus engine

● Written in Go

● Handles all p2p and
consensus logic

● Can handles 100s of
validators at sub-5 second
block times

ABCI mempool connection

Application

logic
ABCI

Ask the application to validate the transaction before committing,

Pool the Txs successfully verified

CheckTx

TxResult

Consensus engine

Keep verified transactions
Flush when held Tx is committed

Consensus

logic
Mempool

ABCI Application Logic

Non-ABCI Application Logic

Validator Node Logic

Tendermint Core Logic

ABCI consensus connection

Application logic
ABCI

Consensus

engine

TxResult

TxResult

…

StateRoot

BeginBlock

DeliverTx

DeliverTx

…

EndBlcok

Commit

Perform transaction verification and state transition based on connection committed block

information that is agreed upon and occurs when a new block is committed

Request status update via Tx agreed on by Tendermint on

DeliverTx request Make Commit request after DeliverTx

process

TxResult is returned as the return value of

DeliverTx request

Return state root after state update as return

value of Commit (next

(Including header to block of)

ABCI query connection

Application logic
ABCI

Connections that can always be queried for the application

Always available with RPC from tendermint core

Query

tendermint

core

Example: Search

connection peer etc.

RPC

* Depends on the number of validators and block size

Throughput

Maximum

throughput (tps)

Bitcoin 3,2

Ethereum 15

Ethermint 200

Tendermint ~14.000*

Visa 56.000

Scalability

● Vertical scalability: How

much tps can a single

blockchain archive. Has a cap

● Horizontal scalability:
Several separate and
specialized chains that
interact efficiently through a
network

Vertical Horizonta

l

Formal specification with proofs of safety and liveness:

https://arxiv.org/abs/1807.04938

Tendermint Diagram:

http://bit.ly/2Nfl9Vb

Casper vs Tendermint:

https://bit.ly/2Iu4Uno

Tendermint BFT Learn More!

http://bit.ly/2Nfl9Vb

Tendermint Core Docs:

https://tendermint.com/docs/

Performance Testing Results:

https://bit.ly/2NKCW9n

Ethan Buchman’s Masters Thesis:

https://bit.ly/2S9PyoF

Tendermint Core Learn More!

Bonded Proof of Stake

Proof of Stake Basics

● Use bonded tokens as resource

limiter for determining voting power

● Eliminates wasteful energy

consumption of Proof of Work

● Public permissionless system

● Solve nothing at stake problem

through slashing and unbonding

periods

Delegation

● Allow any token holder to be a

staker by delegating to a validator

● Skin in the game

● Automatic reward distribution

● Solve stickiness issues through

features such as instant

redelegation and validator

commitments

Multi Token Model

● Specialized staking token for

security

● Similar to ASIC security

● Allow fees to be paid in any

token to massively improve

user experience

Cosmos Proof of Stake Deep Dive:

https://youtu.be/XxZ04w2x4nk

Multi Token Model Paper:

http://bit.ly/2V6YZXI

Efficient Token Distribution Paper:

http://bit.ly/2SReAhO

Proof of Stake Learn More!

http://bit.ly/2V6YZXI
http://bit.ly/2SReAhO

Cosmos SDK

Sovereignty

● Reduces attack surface

● Efficiency gains due to lower
computational overhead

● Fine tune to optimize for your
application

Application Specific Blockchains

Own App
Transaction relayed from
Tendermint via DeliverTx

APPLICATION
Using baseapp's methods: Decode the

extract and route the message (s)

Message routed to the correct module to
be processed

AUTH MODULE BANK MODULE STAKING MODULE
GOV MODULE

Handles
message,

Updates state

Return result to Tendermint (0=Ok, 1=Err)

Own App
Transaction relayed from
Tendermint via DeliverTx

APPLICATION
Using baseapp's methods: Decode the

extract and route the message (s)

Message routed to the correct module to
be processed

AUTH MODULE BANK MODULE STAKING MODULE
GOV MODULE

Handles
message,

Updates state

Return result to Tendermint (0=Ok, 1=Err)

Own App

1. Design the application.

2. Begin the implementation of your application in ./app.go.

3. Start building your module by defining some basic Types.

4. Create the main core of the module using the Keeper.

5. Define state transitions through Msgs and Handlers.

SetName

BuyName

6. Make views on your state machine with Queriers.

7. Register your types in the encoding format using sdk.Codec.

8. Create CLI interactions for your module.

9. Create HTTP routes for clients to access your nameservice

10. Import your module and finish building your application!

11. Create the nsd and nscli entry points to your application.

12. Setup dependency management using dep.

13. Build and run the example.

14. Run REST routes.

Cosmos SDK Tutorial:

https://cosmos.network/docs/tutorial/

Cosmos SDK Repo:

https://github.com/cosmos/cosmos-sdk

The Case for Application Specific Blockchains:

http://bit.ly/2SMiCI7

Cosmos SDK Learn More!

http://bit.ly/2SMiCI7

Low Level Libs

Sovereignty

● Improvement to Protobuf standard

● Naturally support interfaces instead of OneOf

● Deterministic

● Generate proto files from Go code

Amino

Sovereignty

● Self-balancing AVL tree

● All values are stored at leaves

● Immutable with snapshots and
caching

● All operations log(N)

● No hashing keys required

IAVL+ Tree

SovereigntyCrypto

● Cryptography library with built-
in Amino support

● Abstracted multisignature
pubkeys

● BGLS Aggregate Signature
implementations

● BGLS verifier in EVM

Go-Amino Repo:

https://github.com/tendermint/go-amino

IAVL+ Repo:

https://github.com/tendermint/iavl

BGLS Repo:

https://github.com/Project-Arda/bgls

Low Level Libs Learn
More!

Alternative Frameworks
for state machine

1. Install

$ npm install lotion

2. Write your state machine

3. Run it and query the state

● Fork of the Cosmos SDK
maintained by IOV

● Simpler version of the SDK
with more limited features

● Second Go Framework

IOV Weave

Potential Future Frameworks
Chainmint

Ethermint

Lotion JS Repo:

https://github.com/nomic-io/lotion

Weave Repo:

https://github.com/iov-one/weave

Alternative Frameworks
Learn More!

Ethermint

● EVM client built using the Cosmos
SDK

● Will be fully Web3 compatible

● Can deploy existing Ethereum
dapps / smart contracts

● Can add your own precompiles

● Working with TurboGeth team to
build and optimize

Ethermint 2.0

Ethermint DevCon Presentation:

https://youtu.be/VCLbS1Oks8A

Ethermint Repo:

https://github.com/cosmos/ethermint

Ethermint Learn More!

Inter Blockchain Communication

·--------------------------- ..

Message 1:

CommitMsg

Chain A Blockhash 1100

Commit for #100

Precommit Signature Val A

Precommtt Signature Val B

Precommit Signature Val C

Precommit Signature Val D

Precommit Signature Val E

6

1100 ¢ . . #101 ¢Chain A

..Chain B

#102 ¢

(
#72 ¢#70

¢
.. ¢ ..#71 .. #73

Message 2:
CommitMsg

-------··------· c A

'

has'h 1

==' _J

I hash 4 j

-
Key: "packet 9"

Value: 99 steak to Bob

t_

hash 5-8

SovereigntyHorizontal Scalability

● Application-based sharding
is logical as it minimizes
bottleneck

● You only have to be a full
node for applications you
care about

Sovereignty

● Equivalent to Application Layer in Internet stack

● Different types of packet structures/handling protocols
● Token Transfers
● Non Fungible Assets
● Data
● Agoric ERTP

Packet Types

B

B

ZK Summit IBC Presentation:

https://youtu.be/cjfYThAk06w

EdCon IBC Presentation:

https://youtu.be/enPetIum0d0

IBC Webinar:

https://youtu.be/m_b_Noe70Vc

IBC Learn More!

@cosmos

+2/3 validators
have signed

secp256k1
signature

waits for 100
blocks

Logs events

Mint ERC20
Photons

CESC Interchain Scaling Presentation:

https://youtu.be/D4Q-gA_kPrU

PolkaDot vs Cosmos:

https://forum.cosmos.network/t/polkadot-vs-cosmos/1397

Cosmos Intro:

https://cosmos.network/intro

Cosmos Hub Learn More!

COSMOS POLKADOT

Consensus Tendermint (BFT) GRANDPA/BABE

Governance Validator/Delegator
Vote

Referendum and Council representing
stakeholders

Models Hub and Zones Relay chain and parachains

Security Each zone has its own
security

Pooled security

Native token Atom Dot

Comparison

Sovereignty*

*Polkadot substrate can be used as library in Cosmos base Chain

Global Stabilization Time, GST

t ≥ GST Validity Predicate-based Byzantine consensus

p1
p2

p3
p4

