Understanding the big data of video with Al

Yan Ye Machine Intelligence Technology Lab, DAMO Academy

Big Data of the Alibaba Ecosystem

The challe Al-powere Al-powere Al-powere

- The challenges of big data of video
- Al-powered video understanding
- Al-powered video fingerprinting and search
- Al-powered video content production

The challenges of big data of video

Big data of video...

Problem #1: the gap between how video is captured, transmitted, and stored, and how video is consumed

- Video is captured, transmitted and stored as a signal
- However, video is not (just) consumed as a signal, consumption happens at the semantics and emotional levels too
- Need to learn/understand the underlying structure in the video signal

Problem #2: managing the big data of video cost-effectively

- With an ever increasing video content database, need to increase efficiency and reduce cost Considering the diversity of the video source and specific applications, efficient content
- management must be *intelligent*

video classification

video indexing and search

cover image generation

highlight video generation

copyright management

multimodality

Al Reshapes Video Content Management

• Fingerprin

A

owered Video derstanding	Al-powered Content Generation	Al-powered Cor Distribution
d scene recognition	: • Video summarizatio	on • Recommenda
t, where	 Personalized cover 	 Multi-modal
ognition	image generation	 Multi-lingual
ion	 Audio editing 	
ing	 Sports highlights 	
nting & copyright	 Virtual content 	

Al-powered Video Understanding

Multi-modal video structuring

.

Al-powered multi-level analysis of video content

Improving Video Understanding

Label Correlation

Person, Sports Ball, Tennis Racket

Person, Tie

Person, Ski

Pairwise relationship modeling

Large-scale classification with incremental learning

1. New data vs. original data: improving performance of the former while keeping the latter the same (no degradation) 2. Fast learning: no need to re-train

Multi-modality indexing and search

Al-powered Video Fingerprinting and Search

Video Fingerprinting and Content Search

Same Source

Similar Source

Same-source video transformations

- Quality change: noise, 1. contrast, blur, reencoding ...
- Spatial transformation: 2. PIP, text insertion, mirroring, aspect ratio, rotation, crop, shift ...
- Editing: timeline 3.
- Combination of the 4. above

Picture in Picture

Noise

Ratio

Blur

Insertion of pattern

Strong re-encoding

Contrast

Change in gamma

Mirroring

Crop

Shift

Text insertion

Video Fingerprinting: copyright & search

frames sample

Training set: 10000*400 same-source transformed video

Audio Fingerprinting

Alibaba Machine Intelligence Technology Lab

Al-powered Video Content Production

Cover Image/Video Generation

Cover image/video is directly related to user's click-through-rate (CTR)

Problem

- When we have massive amount of video from diverse sources, how do we produce the cover images/video using a general algorithm?
- How to personalize cover image/video?

Solution

• Joint video summarization + online decision optimization with bandwidth cost consideration

韩国前总统朴槿惠一 审被判24年 罚款18...

马蓉反驳父亲撬锁王 宝强家 直言被诬陷

曝刘烨曾跟开玩笑开 过头 李晨站出来护...

盛唐人士最爱洗香香

杨贵妃同款香囊成...

Results @ Youku :

CTR +15% Dwell-Time +12%

Video Production: Sporting Event Highlights Generation

Why diving:

- High viewership in China
- Relatively simple video structure provides an easier starting point to deliver commercial-quality product

✤ Goal:

- Using DL technologies to understand the video structure
- When, what, and who of the key events along the timeline?
- Combine with OCR technology to allow users to create highlights of specific athletes

Diving highlights

One round of diving competition

Athlete 1 starts Athlete 2 starts Athlete 3 starts

Athlete 1 finishes Receives scores

Updated ranking

Athlete 3 finishes Receives scores

Athlete 4 finishes Receives scores

Creating Diving Highlights

Alibaba Machine Intelligence Technology Lab

Diving detection

Long-term temporal encoding layer (LTE)

Grad

Compared to the baseline method (left), the proposed LTE layer (right) can significantly increase the effective temporal reception field (ERTF)

Detection results: public dataset

Methods requiring both RGB data and optical flow

tIoU	In ¹	0.1	0.3	0.4	0.5	0.6	0.7
Karaman et al. [45]	RF ²	4.6	2.4	1.4	0.9	-	-
Richard et al [24]	RF	39.7	30.0	23.2	15.2	-	-
Shou <i>et al.</i> [46]	RF	47.7	36.3	28.7	19.0	10.3	5.3
Yeung et al. [47]	RF	48.9	36.0	26.4	17.1	-	-
Yuan et al. [22]	RF	51.4	33.6	26.1	18.8	-	-
Shou <i>et al.</i> [31]	RF	-	40.1	29.4	23.3	13.1	7.9
Yuan et al. [27]	RF	51.0	40.1	27.8	17.8	-	-
Gao et al. [32]	RF	60.1	50.1	41.3	31.0	19.1	9.9
Hou <i>et al.</i> [21]	RF	51.3	43.7	-	22.0	-	-
Dai <i>et al.</i> [48]	RF	-	-	33.3	25.6	15.9	9.0
Zhao <i>et al.</i> [28]	RF	66.0	51.9	41.0	29.8	-	-
Yang et al. [49]	RF	-	-	-	14.7	-	-
Gao et al. [34]	RF	54.0	44.1	34.9	25.6	-	-
Humam et al. [50]	RF	-	51.8	42.4	30.8	20.2	11.1
Lin <i>et al</i> . [6]	RF	-	-	45.0	36.9	28.4	20.0
Shou <i>et al.</i> [51]	RF	-	35.8	29.0	21.2	13.4	5.8
Liu <i>et al</i> . [8]	RF	-	53.9	46.8	37.4	29.5	21.3

Methods requiring only RGB data									
Xu et al. [11]	R ³	54.5	44.8	35.6	28.9	-	_		
Yu et al. [12]	R	49.3	42.6		31.9	-	14.2		
LTENet	R	59.0	53.2	48.1	41.1	32.2	22.1		
		1							

The proposed method only needs the RGB input, achieves the best action recognition results: For IoU = 0.5, 41% MAP

Detection results: private dataset

tloU	0.5	0.55	0.6	0.65	0.7	0.75	0.8	0.85	0.9	0.95	mMAF
mAP	0.955	0.944	0.937	0.914	0.881	0.856	0.763	0.554	0.229	0.011	0.7044

Dataset: 1.1k diving video including world tournament and Olympic games since 2010

- ranking, etc.
- highlight of specific athletes

Caption Frame Detection

• What is a Caption Frame? The frame containing information about the athlete(s), scores,

• Caption frame detection, combined with OCR technologies, can be used to generate diving

Demo: diving highlights of specific athletes

Original video 39 minutes: http://publicvideos.oss-cn-hangzhou-zmf.aliyuncs.com/d_Q3PH8jsD0.mp4)

- Video is much more difficult than images
- in the compressed domain
- Can compression technologies be adapted to assist with AI-based video learning?

• Processing efficiency can be significantly increased if learning can be conducted

