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CONTEXT AND DRIVERS FOR Al/ML
IN MOBILE NETWORK TESTING

Challenges

» Cost pressure

» Increased network complexity
- 5G NR brings new use cases and flexibility
— More critical performance and availability
requirements

» Loss of Expertise @

MNO

» Legacy, labor-intensive way to exploit data
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MACHINE LEARNING ON MNT

Training
Arltli_ficial
Intelligence
((‘g’)) Test 'Ef
> \
Machine -—
phachl
earning (((g))) Test 'EII - [« ]
L e - T —
= = —b—
Seen Lean Training Training Machine
BE earnini .
P 9 (((g))) Test ﬁf Set Process L(:/Iaggg:g
¢ v Test
' Results
Types of machine learning:
» Supervised Learning Inference
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USE CASES FOR MNT

» Binary Test Scoring
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» Time-based Anomaly Detection
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BINARY TEST
SCORING

Extract more value out of
each test with binary result

Patent pending
Semi-supervised learning

Applications:

— Call Stability Score
— Video Stability Score
— Call Setup Score

Call Stability Score:
>
>

>

v

Call Drop Rate (CDR) is a fundamental KPI to measure network performance.
Measured from a binary result, the call either drops or not.

We find levels of CDR of 1% (even less)
Large number of calls to make the result statistically significant
Calls may drop at different locations (chance factor)




CREATING MORE INSIGHTS THROUGH MACHINE LEARNING
VISUALIZATION EXAMPLE
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CDR: 0.20%
CSFR: 0.35%
Call Stability Score: 0.71
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CDR: 0.25%
CSFR: 0.28%
Call Stability Score: 0.85




CALL STABILITY SCORE - PROACTIVE IDENTIFICATION OF RISKY AREAS

1. Drill-down: poor performing CSS area - and a guilty session with poor CSS, 0.17

(call was successful)

2. Next step: straightforward session analysis

2/13/2018 1:15:33...

Call Stability Score [
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CALL STABILITY SCORE - PROACTIVE IDENTIFICATION OF RISKY AREAS

1. Drill-down: poor performing CSS area - and a guilty session with poor CSS, 0.17

(call was successful)

2. Next step: straightforward session analysis

» Sudden drop of LTE RSRP
and SINR

» Machine learning model
provides a poor score

» Model learnt that calls with
this behavior often dropped

Proactive identification of
risky areas

Obtain more value out of
the collected data

Expose previously hidden
information
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FR1_Sun_Voice A
RSRP -103.9 dBm
RSRQ -6.9 dB
SINR 1.1dB
Table panel Q:
Time LQ (MOS)
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1:15:24.357 PM 4.14 MOS

7 - 10 displayed, 10 in total



TIME-BASED
ANOMALIES

» Automate optimization by
focusing on detected
anomalies

» Unsupervised Learning

» Applications:
— Call Setup
— Capacity Download
Capacity Upload

Video Streaming

measured

+ — predicted by ML model
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ANOMALY DETECTION - GUIDING OPTIMIZATION

1. VOLTE call establishment
2. Establishment time is long (~13 sec) whilst having a very good radio environment
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» Very good RSRP + very good SINR + very long CST = Anomaly!
SIP Dial Response Delay 9030 ms

» 5G: Time-based anomalies important due to many new Call Setup Time (CST) 12.985
parameters and high flexibility of data/configurations ’
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CREATING MORE INSIGHTS THROUGH MACHINE LEARNING
SUMMARY OF THE BENEFITS

/Extract more value out of the collected data\g Efficiency \

» Automatic calculation of the call stability score for every call. Every result becomes more meaningful.
We maximize the number of usable/actionable test results by a dramatic factor

» Obtain meaningful results also from places where the “traditional” test result would not indicate any
problem

Less test data needed - save time in data collection
Proactive identification of risky areas - ease network optimization

Streamline analysis: Guided optimization

vV v v VY

5G: ML-based models to detect and predict beam-forming related topics would be of high advantage
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LEARNINGS AND CONCLUSIONS

Increasing network complexity and cost-pressure
» More efficient / less labor-intensive methodology to extract
key metrics

-

Machine Learning extremely valuable for mobile network
analytics to extract deep insights into network performance

Call Stability Score and Anomaly Detection: identify risky
areas and trends; guide optimization efforts

-

Outlook: 5G and Industry 4.0 offers many more use cases
(high reliability - “data connection stability”, etc.)

https://blog.mobile-network-testing.com
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