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Why ML for Communications (=MLC)?

• Entry points for ML-based improvements

1. high complexity (bad models)

2. inefficient computation (limited resources)

3. slow convergence (low latency applications)

• Potential benefits

1. enable to cope with increased complexity

2. enhance efficiency

3. facilitate cognitive network management

4. provide robust predictions



Load Learning 

Serving link from 

cell 1 

Interference from 

cell 2

Test point 1 Test point 2

Test point 3

Cell 2 Cell 1

General case: M cells, N test points

Reliable rate-load mapping 

estimates/predictions are 

key to reliable QoS predictions

e.g. coverage holes or strong inter-cell 

interference need to be predicted

Problem

What are users’ rates as a function 

of the load at each base station?

• R. L. G. Cavalcante, Y. Shen, S. Stańczak, "Elementary Properties of Positive Concave Mappings with Applications to Network 
Planning and Optimization,"  IEEE Trans. Signal Processing, vol. 64, no. 7, pp. 1774-1783, April 2016



Performance Improvement due to Predicitons

• D. Külzer, S. Stańczak, M. Botsov, ”Novel QoS Control Framework for Automotive Safety-Related and Infotainment Servcies,"  
submitted, Nov. 2019



Classic vs. ML Approach (inspired by David Wipf)

➔ ML is much more than neural networks!

ML approach (data-driven)Classic approach (model-driven)

Problem
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[Andrew Ng] Key issues:

• Energy efficiency neglected

• Domain knowledge ignored

➔ Function properties not preserved

• Choice of performance metrics

• Amount of training data

Which Tools for MLC?

Collection of training data is limited

• Fast time-varying channels and interference

• Short stationarity interval (V2X: 10-40ms)

• Distributed data 

• Limitations on computational power/energy

Huge datasets are available but

• Incomplete data (missing 
measurements for long periods)

• Erroneous data (e.g. software bugs) 

• Misaligned data (different times)

• Time series (i.i.d. unrealistic)

Lower layers (PHY/MAC) Higher layers

According to Andrew Ng



Load Learning (cont.) 

Challenge: The rate-load mapping (RLM) is highly dynamic and 

nonlinear owing to interference  

➔ training must be short

➔ important properties must be preserved 

• Model-based approaches require too much a priori information

But we should not ignore models

• The RLM has a rich structure (e.g., monotonicity and Lipschitz) 

They are hard to exploit in typical machine learning tools



Hybrid-driven robust methods under uncertainty (e.g., few training samples)

Robust Online Load Learning

• D. A. Awan,  R. L. G. Cavalcante, and S. Stańczak, "A robust machine learning method for cell-load approximation in wireless networks," 
in  Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),  2018 
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Demands on MLC

• Robust online ML with good tracking capabilities 

➔ ML with small (uncertain) data sets

• Exploit domain knowledge (e.g. models, correlations, AoA)

➔ Hybrid-driven ML approaches (e.g. use production data)

➔ Learn features that change slowly over frequency, time...

➔ Preserve important function properties

• Distributed learning under communication constraints

➔ New functional architectures for Big Data analytics

• Low-complexity, low-latency implementation

➔ New algorithms, massive parallelization



• I. Yamada and N. Ogura, “Adaptive projected subgradient method for asymptotic minimization of sequence of nonnegative convex 
functions,” Numerical Functional Analysis and Optimization, vol. 25, no. 7/8, pp. 593–617, 2004.

Learning in (Reproducing Kernel) Hilbert Spaces

Use projection methods in RKHS:

➔ Easy to exploit side information

➔ Initial fast speed 

➔ Low complexity

➔ Convergence guarantees

➔ Massive parallelization via 

APSM for fast learning on GPUs



1. Generate and send TX signal 

2. Transmission

4. Post  processing and display

3. Recept ion

Learning-based Reception for 5G NOMA

• D. A. Awan,  R. L. G. Cavalcante, M. Yukawa, and S. Stańczak, "Detection for 5G-NOMA: An Online Adaptive Machine Learning Approach," in  Proc. IEEE 
International Conference on Communications (ICC), May 2018

• D. A. Awan, R.L.G. Cavalcante, M. Yukawa, and S. Stanczak. Adaptive Learning for Symbol Detection: A Reproducing Kernel Hilbert Space Approach. Wiley, 
2019. to appear. 

• M. Mehlhose et.al., “Machine Learning-Based Adaptive Receive Filtering: Proof-of-Concept on an SDR Platform” submitted Oct. 2019
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Fig. 6: User 5: ωL = 0.6 and ωG = 0.4 with T length = 685
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Fig. 7: User 6: ωL = 0.6 and ωG = 0.4 with T length = 685
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Fig. 8: Mean over all users: ωL = 0.6 and ωG = 0.4
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Fig. 9: Mean over all users: ωL = 0.6 and ωG = 0.4

the nonlinearMMSE-SIC in a hardware-in-the-loop system.

The results show that the proposed ML based multiuser is

simpler yet powerful alternative to conventional nonlinear

receivers.

ACKNOWLEDGMENTS

The work is supported by the European commission and

5G Infrastructure Public Private Partnership (5G-PPP) and re-

ceived funding from the EC H2020/5G-PPP program ONE5G

(ICT-760809) project [19].

The authors would like to thank for the contribution of their

colleagues in the project and Andreas Forck, Holger Gäbler

as well as Kirsten Krüger for the ongoing expansion of the

NAMC-SDR firmware with new key features and updates.

REFERENCES

[1] “Study on Non-Orthogonal Multiple Access (NOMA) for NR,” 3rd
Generation Partnership Project, Tech. Rep. 38.812, Dec. 2018.

[2] K. Slavakis, S. Theodoridis, and I. Yamada, “Adaptive constrained
learning in reproducing kernel hilbert spaces: The robust beamforming
case,” IEEE Transactions on Signal Processing, vol. 57, no. 12, pp.
4744–4764, Dec 2009.

[3] M. Yukawa, “Adaptive learning in cartesian product of reproducing
kernel hilbert spaces,” IEEE Transactions on Signal Processing, vol. 63,
no. 22, pp. 6037–6048, Nov 2015.

[4] A. Benjebbour and Y. Kishiyama, “Combination of noma and mimo:
Concept and experimental trials,” in 2018 25th International Conference
on Telecommunications (ICT), June 2018, pp. 433–438.

[5] U. S. S. S. Arachchillage, D. N. K. Jayakody, S. K. Biswash, and
R. Dinis, “Recent advances and future research challenges in non-
orthogonal multiple access for 5g networks,” in 2018 IEEE 87th Ve-
hicular Technology Conference (VTC Spring), June 2018, pp. 1–6.

[6] Z. Ding, X. Lei, G. K. Karagiannidis, R. Schober, J. Yuan, and V. K.
Bhargava, “A survey on non-orthogonal multiple access for 5g networks:
Research challenges and future trends,” IEEE Journal on Selected Areas
in Communications, vol. 35, no. 10, pp. 2181–2195, Oct 2017.

[7] W. Cai, C. Chen, L. Bai, Y. Jin, and J. Choi, “Subcarrier and power
allocation scheme for downlink ofdm-noma systems,” IET Signal Pro-
cessing, vol. 11, no. 1, pp. 51–58, 2017.

[8] Y. Saito, Y. Kishiyama, A. Benjebbour, T. Nakamura, A. Li, and
K. Higuchi, “Non-orthogonal multiple access (noma) for cellular future
radio access,” in 2013 IEEE 77th Vehicular Technology Conference(VTC
Spring), June 2013, pp. 1–5.

[9] S. Abeywickrama, L. Liu, Y. Chi, and C. Yuen, “Over-the-air
implementation of uplink NOMA,” CoRR, vol. abs/1801.05541, 2018.
[Online]. Available: http://arxiv.org/abs/1801.05541

[10] S. Verdu, Multiuser Detection, 1st ed. New York, NY, USA: Cambridge
University Press, 1998.

[11] O. Elijah, C. Y. Leow, T. A. Rahman, S. Nunoo, and S. Z. Iliya,
“A comprehensive survey of pilot contamination in massive mimo—5g
system,” IEEE Communications Surveys Tutorials, vol. 18, no. 2, pp.
905–923, Secondquarter 2016.

[12] D. A. Awan, R. L. G. Cavalcante, M. Yukawa, and S. Stanczak,
“Detection for 5g-noma: An onlineadaptivemachine learning approach,”
in 2018 IEEE International Conference on Communications (ICC), May
2018, pp. 1–6.

[13] U. Mitra and H. V. Poor, “Neural network techniques for adaptive
multiuser demodulation,” IEEE Journal on Selected Areas in Commu-
nications, vol. 12, no. 9, pp. 1460–1470, Dec 1994.

[14] Y. Isik and T. Necmi, “Multiuser detection with neural network and pic
in cdma systems for awgn and rayleigh fading asynchronous channels,”
Wireless Personal Communications, vol. 43, no. 4, pp. 1185–1194, Dec
2007. [Online]. Available: https://doi.org/10.1007/s11277-007-9293-0

[15] B. Aazhang, B. . Paris, and G. C. Orsak, “Neural networks for mul-
tiuser detection in code-division multiple-access communications,” IEEE
Transactions on Communications, vol. 40, no. 7, pp. 1212–1222, July
1992.

20 40 60 80 100 120 140 160 180 200

measurement time index

0

500

1000

1500

2000

d
et

ec
ti

o
n

 d
e
la

y
 [
µ

s]

Detailed Processing Time

machine learning algorithm

MMSE

MMSE SIC

Fig. 6: User 5: ωL = 0.6 and ωG = 0.4 with T length = 685

20 40 60 80 100 120 140 160 180 200

measurement time index

0

500

1000

1500

2000

2500

d
et

ec
ti

o
n

 d
e
la

y
 [
µ

s]

Detailed Processing Time

machine learning algorithm

MMSE

MMSE SIC

Fig. 7: User 6: ωL = 0.6 and ωG = 0.4 with T length = 685

20 40 60 80 100 120 140 160 180 200

measurement time index

10
-4

10
-2

10
0

S
E

R

Symbol Error Rate

machine learning algorithm

MMSE

MMSE SIC

Fig. 8: Mean over all users: ωL = 0.6 and ωG = 0.4

20 40 60 80 100 120 140 160 180 200

measurement time index

0

200

400

600

800

1000

1200

d
et

ec
ti

o
n

 d
el

a
y
 [
µ

s]

Detailed Processing Time

machine learning algorithm

MMSE

MMSE SIC

Fig. 9: Mean over all users: ωL = 0.6 and ωG = 0.4

the nonlinearMMSE-SIC in a hardware-in-the-loop system.

The results show that the proposed ML based multiuser is

simpler yet powerful alternative to conventional nonlinear

receivers.
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Can we design better neural networks?



Sparsity in Communication Systems

• Sparsity in the data (soft sparsity)

• Sparsity in the channel (soft sparsity)

• Sparsity in the user activity (hard sparsity)

• Sparsity in the network flow (hard sparsity)



Sparsity in Communication Systems

• We can use     -balls to model sparse signals

• S. Limmer and S. Stanczak, "Towards optimal nonlinearities for sparse recovery using higher-order statistics," 2016 
IEEE 26th International Workshop on Machine Learning for Signal Processing (MLSP), Vietri sul Mare, 2016, pp. 1-6.



Sparse Recovery via a Deep Neural Network

• CS methods are not suitable for low-latency applications 

• Training must be short
➔Design a good DNN for sparse recovery 
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• S. Limmer and S. Stanczak, "Towards optimal nonlinearities for sparse recovery using higher-order statistics," 2016 
IEEE 26th International Workshop on Machine Learning for Signal Processing (MLSP), Vietri sul Mare, 2016, pp. 1-6.

Optimization for MMSE Recovery

• S. Limmer and S. Stanczak, "Towards optimal nonlinearities for sparse recovery using higher-order statistics," 2016 
IEEE 26th International Workshop on Machine Learning for Signal Processing (MLSP), Vietri sul Mare, 2016, pp. 1-6.



• Input uniformly distributed on 

• The conditional MMSE estimator is a 

polytope centroid under certain conditions. 

➔ Volume and moment computation

• Implementable using the DL architecture

Designing DNNs via Laplace Techniques



Numerical Experiments with Training

• S. Limmer and S. Stanczak, “A neural architecture for Bayesian compressive sensing via Laplace techniques“, IEEE Trans. On Signal 
Processing, Nov. 2018

Real data



Take-away Message

• ML/AI might be a “salvation” for industrial communication

• But there is a strong need for robust online ML methods

➔ Exploit domain knowledge: Hybrid-driven distributed ML

➔ Learn feature insensitive to frequency bands, phases …

• No time and data for extensive training of DNN

➔ Design good NN architectures for a given task



Exploiting „Interference“ for Learning

Sensor data and wireless nodes

Fusion node

Harness interference for 

computing SVM classifier

• K. Ralinovski, M. Goldenbaum and S. Stanczak, Energy-efficient Classification for Anomaly Deteciton: The Wireless Channel as a Helper, IEEE ICC, 
2016 

• S. Limmer, J. Mohammadi, S. Stanczak, “A Simple Algorithm for Approximation by Nomographic Functions”, 53rd Annual Allerton Conference on 
Communication, Control, and Computing, 2015 

• M. Raceala-Motoc and S. Limmer and I. Bjelakovic and S. Stanczak (2018). Distributed Machine Learning in the Context of Function Computation
over Wireless Networks. 52nd Asilomar Conference on Signals, Systems and Computers 2018, 

• Bjelakovic, M. Frey and S. Stanczak (2019). Distributed Approximation of Functions over Fast Fading Channels with Applications to Distributed 
Learning and the Max-Consensus Problem. 57th Annual Allerton Conference on Communication, Control, and Computing, 24-27 Sept. 2019 in 
Urbana, IL, USA
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