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Why ML for Communications (=MLC)?

« Entry points for ML-based improvements
1. high complexity (bad models)
2. Inefficient computation (limited resources)
3. slow convergence (low latency applications)

« Potential benefits
1. enable to cope with increased complexity
2. enhance efficiency
3. facilitate cognitive network management
4. provide robust predictions



Load Learning
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Problem
What are users’ rates as a function
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R. L. G. Cavalcante, Y. Shen, S. Stariczak, "Elementary Properties of Positive Concave Mappings with Applications to Network
Planning and Optimization," |EEE Trans. Signal Processing, vol. 64, no. 7, pp. 1774-1783, April 2016



Performance Improvement due to Predicitons
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Classic vs. ML Approach (inspired by David Wipf)

Problem
Find a load vector z* given users’ rates # and network configuration

Classic approach (model-driven) ML approach (data-driven)

e Modeling fe(gj)
e Simplification: fp()
e Human-designed algoirthm e Learn w offline (e.g. from data)

e Choose a function set {g,}wecq

input: 6

while <some condition is met>
(Pt = T(2(™); end

output: £ = x*

*

® @:gw(9>%$

= ML is much more than neural networks!



Which Tools for MLC?

According to Andrew Ng

Key issues:
E ' Large neural networks  Energy efficiency neglected
g _ « Domain knowledge ignored
ug /Traditigna| ML tools =» Function properties not preserved
& » Choice of performance metrics
« Amount of training data

Amount of data

Lower layers (PHY/MAC) Higher layers

Collection of training data is limited Huge datasets are available but

« Incomplete data (missing

« Fast time-varying channels and interference :
measurements for long periods)

« Short stationarity interval (V2X: 10-40ms) | , Erroneous data (e.g. software bugs)

* Distributed data - Misaligned data (different times)

« Limitations on computational power/energy Time series (i.i.d. unrealistic)




Load Learning (cont.)

Challenge: The rate-load mapping (RLM) is highly dynamic and
nonlinear owing to interference

=» training must be short

=» important properties must be preserved

* Model-based approaches require too much a priori information
But we should not ignore models

 The RLM has a rich structure (e.g., monotonicity and Lipschitz)
They are hard to exploit in typical machine learning tools



Robust Online Load Learning

Hybrid-driven robust methods under uncertainty (e.g., few training samples)
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* D.A.Awan, R.L. G. Cavalcante, and S. Stariczak, "A robust machine learning method for cell-load approximation in wireless networks,"
in Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2018



Demands on MLC

Robust online ML with good tracking capabilities
=» ML with small (uncertain) data sets

Exploit domain knowledge (e.g. models, correlations, AoA)
=» Hybrid-driven ML approaches (e.g. use production data)
=» Learn features that change slowly over frequency, time...
=» Preserve important function properties

Distributed learning under communication constraints
=> New functional architectures for Big Data analytics

Low-complexity, low-latency implementation
=» New algorithms, massive parallelization



Learning in (Reproducing Kernel) Hilbert Spaces

H
Jo
Use projection methods in RKHS: | | "=
fi /og S1
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- Fixed dictionary with 17k elements
=» Initial fast speed
= Low complexity 3
c 010!
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* |.Yamada and N. Ogura, “Adaptive projected subgradient method for asymptotic minimization of sequence of nonnegative convex

functions,” Numerical Functional Analysis and Optimization, vol. 25, no. 7/8, pp. 593—617, 2004.



Learning-based Reception for 5G NOMA

4. Post processing and display l 1. Generate and send TX signal
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. D. A. Awan, R. L. G. Cavalcante, M. Yukawa, and S. Stanczak, "Detection for 5G-NOMA: An Online Adaptive Machine Learning Approach," in Proc. IEEE
International Conference on Communications (ICC), May 2018

. D. A. Awan, R.L.G. Cavalcante, M. Yukawa, and S. Stanczak. Adaptive Learning for Symbol Detection: A Reproducing Kernel Hilbert Space Approach. Wiley,
2019. to appear.

o M. Mehlhose et.al., “Machine Learning-Based Adaptive Receive Filtering: Proof-of-Concept on an SDR Platform” submitted Oct. 2019



Can we design better neural networks?



Sparsity in Communication Systems

« Sparsity in the data (soft sparsity)
e Sparsity in the channel (soft sparsity)
e Sparsity in the user activity (hard sparsity)

« Sparsity in the network flow (hard sparsity)

We aren’t likely to get a 1000X improvement in compute with the
traditional, pure hardware improvements, or even better software and
communication to put more chips together. It will need co-design of
algorithms and compute e.g. can we create a model with a 1000X more
parameters, but using only 10X more compute? | believe sparse models
that address this issue and systems that can take advantage of these
constraints will make a big difference.

Rajat Monga, Google Brain, Lead Developer of TensorFlow



Sparsity in Communication Systems
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* S.Limmer and S. Stanczak, "Towards optimal nonlinearities for sparse recovery using higher-order statistics," 2016
IEEE 26th International Workshop on Machine Learning for Signal Processing (MLSP), Vietri sul Mare, 2016, pp. 1-6.



Sparse Recovery via a Deep Neural Network

Deep Learning model
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 CS methods are not suitable for low-latency applications

* Training must be short
=» Design a good DNN for sparse recovery



Optimization for MMSE Recovery
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* S.Limmer and S. Stanczak, "Towards optimal nonlinearities for sparse recovery using higher-order statistics," 2016
IEEE 26th International Workshop on Machine Learning for Signal Processing (MLSP), Vietri sul Mare, 2016, pp. 1-6.



Designing DNNs via Laplace Techniques

* Input uniformly distributed on

Blz{XZO:Zf\;lxigl} h
* The conditional MMSE estimator is a £ 0.5-
polytope centroid under certain conditions.

= Volume and moment computation 05
 Implementable using the DL architecture
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Numerical Experiments with Training
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S. Limmer and S. Stanczak, “A neural architecture for Bayesian compressive sensing via Laplace techniques”, IEEE Trans. On Signal

Processing, Nov. 2018




Take-away Message

ML/AI might be a “salvation” for industrial communication

But there is a strong need for robust online ML methods
=» Exploit domain knowledge: Hybrid-driven distributed ML
=» Learn feature insensitive to frequency bands, phases ...

No time and data for extensive training of DNN
=» Design good NN architectures for a given task



Exploiting ,,Interference® for Learning
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. K. Ralinovski, M. Goldenbaum and S. Stanczak, Energy-efficient Classification for Anomaly Deteciton: The Wireless Channel as a Helper, IEEE ICC,
2016

* S.Limmer, J. Mohammadi, S. Stanczak, “A Simple Algorithm for Approximation by Nomographic Functions”, 53rd Annual Allerton Conference on
Communication, Control, and Computing, 2015

i M. Raceala-Motoc and S. Limmer and I. Bjelakovic and S. Stanczak (2018). Distributed Machine Learning in the Context of Function Computation
over Wireless Networks. 52nd Asilomar Conference on Signals, Systems and Computers 2018,

i Bjelakovic, M. Frey and S. Stanczak (2019). Distributed Approximation of Functions over Fast Fading Channels with Applications to Distributed
Learning and the Max-Consensus Problem. 57th Annual Allerton Conference on Communication, Control, and Computing, 24-27 Sept. 2019 in
Urbana, IL, USA
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