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Agenda

Use cases

Overall architecture framework

Data handling framework

Integration of ML marketplace

Model optimization

Framework for evaluation of intelligence level
ML Function orchestration

student projects with FG.

Future work: gaps and relations and liaisons
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Use cases for ML in IMT-2020 and
future networks

Traffic Classification collect a large amount of traffic data and learn the
patterns of the collected data to build traffic
classification models

nd finer grain UE mobility.

Mobility Pattern Prediction §t %ﬁtlon estimates for coarse grain, large

Cognitive Heteroge ML in Cognitive Heterogeneous Networks allow
Networks allocation of resources from different communication
networks access nodes



Problem statements
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Architecture framework  pyplished by ITU as
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Application of ML pipeline |ncluded in ITU-T

( User \N Access network A / Core network (CN) | )
equipment (AN) . . . . ,
(UE) PCF USM

CEF _&i
-

ol

t_-
walsAsgns 1uat'!uev\|

Y
.
ASF

[ | -
)} - Comworptane _____________ _|RPsu
m igier plane

UE-AN data
transport < RP-au >

NACF NSSF

LY
%
Y,

|

-

upk { RPud Y./ Data
. -\___\net“furka/-'

S

\ \ J . ‘[31.64&;8]}6-1
1. Collect location information from UEs 4. Collect DL packet information from
2. Collect channel measurements reported GW
at the AN 5. Collect AN information
3. Analyse to make intelligent scheduling 6. Analyse to make intelligent QoS

decisions. configurations



Handling of data

ML Repos
ML
Models Models Models
Data Data
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Events, alarms, performance, logs




: Consented by SG13 as
Data handling f,rameworI<Y.3174
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ML5G-I-167R5
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Model search

MLFO Internal ML marketplace External ML marketplace
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Internal ML External ML
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Model optimization (in the ML sandbox)
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MLFO NFVO Consented by SG13 as

Intelligence level evaluation
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Table 7-2 Network intelligence level evaluation

Dimensions
Network intelligence
level
Action Data Analvsis Decision Demand
Implementation Collection v Mapping
Manual network
L0 Human Human Human Human Human
operation
Assisted
L1 | network Human & Svystem s Human Human Human
System
operation
L2 PI‘EIIIIIIIIIHI'}' System e e =2 Human Human
intellisence System System
Intermediate Human & | Human
L3 intellisence i SRR System System Human
Advanced Human &
L4 intellizence Svstem Svstem Swvstem Swvstem System
L5 | Full intelligence | System System System System System
NOTE 1- The decision process in each level has to support human intervention, i.e. human reviewed decision and
execution instructions have the highest authority.
NOTE 2- In certain implementations of the evaluation of network intelligence levels, the dimensions mav be
independently evaluated.
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Student projects: PoCs

FG is offering guidance to uni students for doing relevant
projects.

List of projects is described in ML5G-1-174

. . *15-20 students actively
How to join:

time

fgml5g-students@lists.itu.int eAcross 4-5 countries

Mentor (Spain): “the student was very involved in the

Student (Nigeria)] project, and willing to learn about the application of ML
- Future netwo| to networks. The knowledge acquired during the project
- How to save ( seems also to complement the main academic activities
- Using ML to q of the student’.

contributing at any point of

nodes
- How to distribute ML tasks across UEs, edge devices and loT devices

AR)

- Working with edge computers to communicate over servers in the cloud “
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LS are published in

Liaisons + CO”E ML5G website

MPEG (on model compression)

IRTF NMRG (on Al/ML use cases)

Linux Foundation for Al (on model optimization)
ETSI ENI (on Intelligence level)

ORAN (on ML model metadata)

. 3GPP

And you!!



Danke!
vishnu.n@ieee.org

https://extranet.itu.int/sites/itu-t/focusgroups/ML5G/SitePages/Home.aspx
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