
Application Security
Framework for DFS
Kevin Butler

4-5 December 2019
#financialinclusion

Why Have an Application Security
Framework for DFS?

• Smartphones are a tremendous driver of innovation and
adoption
• Much of the most compelling new developments in computing has been

in the smartphone area over the past 10 years

• Smartphones have only recently become a conduit for conducting
financial activity
• But growth has been explosive

• Mobile applications have great potential for providing improved
security
• But the threat surface is larger and the consequences more dire

Security Advantages of Smartphones

• Featurephones on 2G networks face vulnerabilities in a number
of areas throughout the MNO’s network.

Security Advantages of Smartphones

• Smartphones support end-to-end security

Other Smartphone Security
Features

• Secure hardware
• Secure boot

• Platform measurement

• Trusted execution envrionments

• Strong authentication
• Biometric security

Template for Application Security
Best Practices

• General best practices for a mobile money smartphone
application security framework

• Draws upon GSMA study on mobile money best practices, ENISA
smartphone security development guidelines, State Bank of
Pakistan mobile payment applications security framework

• Template can be used as input to an app security policy by DFS
providers

• Considerations: device and application integrity, communication
security and certificate handling, user authentication, secure data
handling, secure application development

Device and Application Integrity

• Assure the integrity of mobile devices prior to engaging in
sensitive data transactions
• The safest devices are those that have not been “jailbroken” or “rooted”

since it may not be possible to assess their security

• Circumvents platform integrity routines such as secure boot

• Applications should use mobile platform services to determine that they
and the underlying platform have not been modified

• Remove extraneous code that may have been added to the
application during testing or features not designed for the target
platform prior to deploying app in production

• Assure the integrity of the app on the server side

Communication Security

• Ensure that apps are using standardized encryption libraries

• Current best practice is minimum TLS 1.2
• Why TLS? Widely-deployed, protocol openly available, not patent-

encumbered, free libraries in every OS

• Older libraries have issues
• Susceptibility to attacks (Heartbleed, DROWN, POODLE, BEAST, etc)

• TLS v1.3 is becoming available
• Better performance and security but will likely take a few years before

we see very wide adoption

TLS Ciphersuites

• There are many different algorithms used for authentication,
encryption, and integrity

• Not all of them are considered secure for a modern deployment –
especially if the server supports TLS < 1.2

• Modes of operation: the way that you encrypt information is
important to consider
• Encryption ciphers are generally “block ciphers” that break data into

chunks (blocks)
• The way that these blocks are linked together can be good or bad for

security

• One recommended mode:
TLS_DHE_RSA_WITH_AES_128_CBC_SHA

Example: Electronic Code Book

• ECB is fast and parallelizable; blocks are encrypted independently
of each other

• Why is this bad?

Example: Electronic Code Book

• ECB is fast and parallelizable; blocks are encrypted independently
of each other

• Why is this bad?

Authenticated Encryption

• Encryption assures confidentiality but does not assure integrity

• Require message authentication codes (MACs) and corresponding
hashing algorithm for integrity
• Some hashing ciphers are good, e.g., SHA-256

• Some hashing ciphers are not, e.g., MD5, SHA-1 (no longer
recommended)

• New modes of encryption in TLS 1.2 and 1.3 provide
authenticated encryption
• These provide both confidentiality and integrity without needing to

explicitly add MACs

• GCM can provide this - but not much client adoption yet

Encryption Ciphers

• Important to assure that the ciphers used for encryption are
themselves secure

• Strike balance between performance and security
• AES-128 is fine for now, AES-256 might be overkill

• But that might not be the case a few years down the road

• Need to keep informed about the strength of crypto ciphers

• 3DES has been officially deprecated by US NIST

• Is it still being used?

DES Usage (Frost et al., 2019)

• Over 40% of queried TLS servers supported some form of DES

• Even DES-40 was found on some servers!

3DES DES-56

Key Negotiation

• The way in which session keys are negotiated can also be insecure

• Many modes of Diffie-Hellman negotiation can be used

• However, ephemeral DH is more secure than fixed, and especially
anonymous DH
• Characterised as TLS_DHE_ in the set of available negotiation

algorithms

• Anonymous DH (TLS_DH_anon) are susceptible to MITM
attacks
• DH always needs to be authenticated!

TLS on Clients

• All versions of Android beginning with API level 16+ have support
for TLS 1.2
• Corresponds to Android 4.1 Jelly Bean, released July 2012

• TLS 1.2 enabled by default for API level 20+
• Corresponds to Android 5.0 Lollipop, released November 2014

• SHA-256 only supported as API option for API level 20+

• Optimally at least this level of Android should be the supported
to ensure TLS 1.2 is employed by clients

Certificate Handling: Server

• Offer certificates that have been signed by CAs, rather than
self-signed certificates
• Have a contingency plan if the CA fails or is no longer trustworthy

• Do not offer expired TLS certificates for clients to verify

• Lifetime of issued certificates should be limited to 825 days

• Extended validation (EV) certificates are likely not necessary
• Standard certificates are sufficient

Certificate Handling: Client

• Smartphone OSes properly check to see that new TLS
connections include a valid X.509 certificate
• But many applications override this check

• Likely to silence errors during testing

• Bypassing certificate validation and server authentication should
never be done in production code

• Trusted CAs should be stored securely by the client
• E.g., in an Android KeyStore object for storing the set of trusted Cas

and a TrustManagerFactory object to store them in

• Certificate pinning can prevent being presented a fake server
name later
• Use APIs such as Android’s CertificatePinner

User Authentication

• PINs and passwords should not be easily guessable
• Weak credentials should not be allowed

• However, do not force the user to constantly change their
password!

• Multi-factor authentication is strongly encouraged before
performing financial or other sensitive transactions

• Avoid the use of SMS as an authenticator
• OTPs can be intercepted by SS7 hijacks

• Use smartphone authenticators instead (e.g., Authy)
• Fingerprint API in Android in FingerprintManager class

Secure Data Handling on Client

• Modern Android devices have many mechanisms to support
more trustworthy data handling

• Android KeyStore can keep data either encrypted on main device
or within trusted execution environment (TEE)

• API call KeyInfo.isInsideSecureHardware() available
for Android 6.0 and greater

• Android 8.0 provider interface to retrieve ID attestation directly
from secure hardware
• ATTESTATION_ID_SERIAL and ATTESTATION_ID_IMEI

retrieve device serial number and IMEI of all radios from TEE

Trusted Execution Environment

• AOSP provides Trusty OS in TEE, other manufacturers provide their
own (Trustonic Kinibi, Qualcom QSEE most commonly seen)

Secure Data Handling
Recommendations

• Use the Android KeyStore framework

• Use TEEs when they are available on devices

• Delete confidential information from caches and memory and
avoid general exposure of information
• E.g., storing the secret key on the stack

• Use fine-grained permissions to restrict data sharing

• Do not hard-code sensitive information such as passwords or keys
into the application source code

Input Validation

• Avoid storing data in external storage
• It becomes available to all applications so no integrity should be assumed

• Perform strong input validation if you do this

• Validate any input coming from the client to be stored in
databases
• Do this to avoid SQL injection attacks

Secure Application Development

• Develop applications according to industry-accepted secure
coding practices and standards

• Assure a means of securely updating applications and assure that
all dependent libraries and modules are secure
• Provide updates when required

• Have code independenty assessed and tested by internal and/or
external code review teams

Summary

• Good practices revolve around basic security principles

• The template provides a starting point for ensuring principles of
authentication, access, control, integrity, and confidentiality are
maintained

• Privacy out of scope but also an important factor

• Technologies change so specific recommendations might also
change but the long-term trends are clear

• Be vigilant!

