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Applications of Al in
flood prediction
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Natural disaster modelling at One Concern
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Compound and Scalable Flood Prediction System
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Hagibis 2019 flood in Chikuma River, Japan
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Predicted flood extent was produced by 1C Japan-wide compound flood model. The
predicted maximum flood map was plotted against the GSI estimated flood map. The overall hit
rate for the flood extent is 0.82.



Application of M

® Generate synthetic riverine
® Improve streamflow predic




Riverine Levee G




Flood defense: riverine levee

OSM
Input Data

Water Distance

Features
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Levee Probabilit Vector Lines

Probability Raster +
Vector Line Output

Levee generation from DEM and land cover features

Levee crest elevation and location is important for
accurate flood risk prediction.

Large-scale flood models are run at a coarse resolution,
not adequate to accurately capture flood defense or
require a DEM resampling that reduces the crest
elevation.

The pixel-level levee classifier: A random forest model,
trained to produce a pixel-level probability of levees.

The vectorization model: produces a shapefile of levee
lines from the probability outputs the river flowlines, and

river width data. y



Riverine levee: pixel-level levee classification

Crossvalidation results
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Results from 7 cities in Japan.

e Leave-one-out cross validation was used.

Estimated (blue) vs manually labelled levee e Precision was given more focus during the pixel-
level model training. Recall can be improved using

the vector model.

in a city C, Japan
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Riverine levee: vector lines I

Distance from Levee Labels to Nearest Levee Prediction
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XY distance between labelled and predicted levee lines XY offset vs elevation offset in City A

e Between 23% and 46% of the true levee labels lie exactly on a predicted levee vector.
e Between 73% and 93% lie within 25 meters (5 pixels) of a vectorized levee output.
e The mode of XY offset is 2.45m and elevation offset is 0.59m. %



Riverflow Predict




Riverine model

Distributed hydrological model

High-resolution simulations (1 hr, T km)
Automatic model calibration using Evolutionary
Algorithm

Post-processed using Al (ongoing research)

Post-processed
streamflow (and
water level)

Physics-based model Streamflow
Weather data > y. ; » from the
(Calibrated using EA) L
riverine model
?

Catchment data Streamflow data




Kumamoto City (Japan) flood in 2012

National model at 309101289908100 Hourly water level at 309101289908100
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July 2012 Flood
Average 0.48 (0.22) | 0.93(0.03) | 0.57 (0.22)

- 250000 displaced (n=10)

- 25dead

. Threshol Hit Rate is 92%
- Several buildings flooded reshold exceedance Hit Rate is 9

(12 out of 13). The False Alarm was 0%




Thank you!

Feyera Hirpa
fhirpa@oneco
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