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1. Motivation and objectives

• Challenge in climate change: Anticipation and detection of extreme events

• Machine learning approaches…

– have excelled in the detection of anomalies in Earth data cubes,

– but are typically both computationally costly and supervised

• Objectives

– Develop an unsupervised, generic, efficient, generative approach for 
extreme event detection

– The model not only detects extreme events, but also explains why they 
were produced

3



2. Case study: Drought monitoring

• Objective: Europe, severe Russian heat-wave between April-
August 2010

• Databases:
1. International Disaster Database (EM-DAT, 2008)

• Drought annotations at spatio-temporal location-level
• Only used for evaluation

2. Earth System Data Lab (ESDL) (Mahecha et al., 2020)
• Essential Climate Variables (ECVs) 
• ECVs for droughts in 2003-2015
• 3 different time periods for training, validation (non-

drought periods) and test (drought+non-drought period) 
stages.

Mirny, a Russian village ravaged by wildfires during the 
drought in 2010. Credit: Yuri Kochetkov/European Pressphoto 

Agency

A fire near the village of Golovanovo, in the Ryazan region of 
Russia, during the heat-wave in 2010. Credit: Natalia 

Kolesnikova/Agence France-Presse — Getty Images

Russia counts the cost of drought and wildfires. Credit: BBC

4



2.1 Essential Climate Variables (ECVs) for droughts
① INPUT: 𝐿 data cubes [𝑓1, 𝑓2, … , 𝑓𝐿]𝑇,𝑁

𝑇 timesteps, 𝑁 spatial locations per timestep

Evaporation

Transpiration

Surface Moisture

Root Moisture

Air Temperature 2m

Gross Primary 
Productivity

FAPAR Leaf Area Index
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2.2 Deep Learning for drought detection

𝑓1: Surface moisture 𝑓2: Root moisture 𝑓3: GPP 𝑓4: Transpiration

𝑓5: Air Temperature 2m 𝑓6: Evaporation 𝑓7: FAPAR 𝑓8: Leaf Area Index

① INPUT: 𝐿 Essential Climate Variables (ECVs) [𝑓1, 𝑓2, … , 𝑓𝐿]𝑇,𝑁
𝑇 timesteps, 𝑁 spatial locations per timestep

OUTPUT: 
ECVs Reconstruction

[ መ𝑓1, መ𝑓2, … , መ𝑓𝐿]1:𝑇

ENCODER

Appearance

Motion

DECODER

Latent 
Representation
[𝑥1, 𝑥2, … , 𝑥𝐶]𝑇,𝑁

② SlowFast Convolutional Autoencoder 

OUTPUT: Anomaly score
𝐷𝑡𝑛 = −log(𝑝 𝒙𝑡𝑛 )

③ Gaussianization Flows (Unsupervised Deep Generative Model)
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Credit: Resuly’s Blog, http://resuly.me/

SlowFast Convolutional Autoencoder

Appearance

INPUT: ECVs
[𝑓1, 𝑓2, … , 𝑓𝐿]𝑇,𝑁
𝑇 timesteps,
𝑁 spatial 

locations per 
timestep

𝛽𝐶 𝛼𝑇

𝐶
𝑇

Motion
ENCODER DECODER

OUTPUT: 
ECVs Reconstruction

[ መ𝑓1, መ𝑓2, … , መ𝑓𝐿]1:𝑇
𝐶
𝑇𝑇 𝑇

𝛼𝑇 3D Max Pooling

Trilinear Upsampling

𝐶′
𝑇

𝐿

𝐿

𝐿

3D Convolution

SlowFast Networks for Video Recognition (Feichtenhofer et al., 2019)
• Slow or appearance pathway: Low frame rate and temporal resolution 𝛼𝑇, 𝛼 < 1; 

high number of channels (spatial resolution) 𝛽𝐶, 𝛽 > 1
• Fast or motion pathway: High frame rate and temporal resolution 𝑇; 𝐶 channels
• Lateral connections between Slow and Fast pathways
• Skip connections between the encoder and the decoder
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Gaussianization Flows (Meng et al., 2020)

• Deep generative, trainable model: Efficient PDF estimation via maximum likelihood + sample generation
• Bijective, invertible mapping from data distribution to a standard Gaussian distribution (target)
• Anomaly score: Negative Log-Likelihood (NLL) → 𝐷𝑡𝑛= −log(𝑝 𝒙𝑡𝑛 )
• Visualization of training phase through epochs:

Input samples 𝒙 Gaussianized PDF 𝑝(𝒛) Real (blue) vs. estimated (orange) PDF 𝑝(𝐱)
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2.3 EXplainable AI (XAI) for drought monitoring
• Integrated Gradients (IG) (Sundararajan et al., 2017): Integral of gradients of the output 𝐷 with respect to inputs 

along the path from a given baseline 𝑓1:𝐿
′ to input 𝑓1:𝐿. 

𝐼𝐺 𝑓1:𝐿 ≔ (𝑓1:𝐿 − 𝑓1:𝐿
′ ) ∙ න

𝛼=0

1 𝜕𝐷(𝑓1:𝐿
′ + 𝛼 × 𝑓1:𝐿 − 𝑓1:𝐿

′ )

𝜕𝑓1:𝐿
𝑑𝛼

• Two fundamental axioms of IG:
• Sensitivity: “For every input and baseline that differ in one feature but have different predictions, the 

differing feature should be given a non-zero attribution”
• Implementation invariance: “Attributions are always identical for two functionally equivalent networks 

(i.e. their outputs are equal for all inputs, despite having very different implementations)”
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3. Take-home messages for the 

application of AI4NDM

1. Fully unsupervised model

– Semi-supervised/supervised models: Annotations at spatio-temporal location-level 
might be inaccurate

2. Generic vs. context-aware framework

– Should we use different models for drought detection in Russia/Europe/Worldwide?

3. Generic model

– Extension to other extreme events

4. XAI for the study and analysis of compound events
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