Revealing Multimodality in Ensemble Weather Prediction

Thomas Spengler

Presentation prepared by Natacha Galmiche

N. Galmiche¹, N.Blaser¹, T.Spengler², C.Spensberger², H.Hauser¹ and M.Brun³ ¹ Department of Informatics ² Geophysical Institute and ³ Department of Mathematics of the University of Bergen, Norway

Ensemble data:

N (= 50) univariate time series (each called *member*) evolved out of:

Perturbed initial condition

Different models

Common interpretation method:

.Mean	as expected value
Standard deviation	as uncertainty

What is a multimodal distribution? Multimodality:

Number of modes (i.e likely outcomes) **k>1**

What is a multimodal distribution? Multimodality:

Number of modes (i.e likely outcomes) k>1

What is a multimodal distribution?

Multimodality:

Number of modes (i.e likely outcomes) **k>1**

What is a multimodal distribution?

Multimodality:

Number of modes (i.e likely outcomes) **k>1**

ALVERSIAN S

What is a multimodal distribution?

Multimodality:

Number of modes (i.e likely outcomes) k>1

Problem?

"mean + std" method:

- T1. Estimate the number of modes k at each time step t
- T2. Summarize each mode at each t
- **T3.** Determine when modes appear and/or disappear
- **T4.** Determine all possible connections between modes

- T1. Estimate the number of modes k at each time step t
- T2. Summarize each mode at each t
- **T3.** Determine when modes appear and/or disappear
- **T4.** Determine all possible connections between modes

- T1. Estimate the number of modes k at each time step t
- T2. Summarize each mode at each t
- **T3.** Determine when modes appear and/or disappear
- **T4.** Determine all possible connections between modes

- T1. Estimate the number of modes k at each time step t
- T2. Summarize each mode at each t
- **T3.** Determine when modes appear and/or disappear
- **T4.** Determine all possible connections between modes

- T1. Estimate the number of modes k at each time step t
- T2. Summarize each mode at each t
- **T3.** Determine when modes appear and/or disappear
- **T4.** Determine all possible connections between modes

II. Problem

Design rationales:

The distribution can have any shape
 →Number of modes k and type of distribution unknown

- **2.** All ensemble members matter→Outliers should not be ignored
- **3.** All scales matter→Avoid thresholds
- 4. Not a black box
 →The process of determining k,
 →its uncertainty
 →and the consequences of choosing a particular k
 should remain transparent

Graph construction

For each time step t:

1) Cluster the data assuming successively

2)k=1, 2, 3, .., N

- 3) Associate each assumption k with a score
- 4) Define a life span for each assumption k
- 5) For each cluster, create a vertex
- 6) Create edges between vertices

Graph construction

For each time step t:

1) Cluster the data assuming successively

2)k=1, 2, 3, .., N

- 3) Associate each assumption k with a score
- 4) Define a life span for each assumption k
- 5) For each cluster, create a vertex
- 6) Create edges between vertices

III. Revealing multimodality Visualization tools

Entire graph view:

Effortless exploration & exposition of a threatening scenario

III. Revealing multimodality Visualization tools

III. Revealing multimodality Application

On July 27 at noon

Mean and standard deviation:

"22.3 ± 4.7°C"

Our method:

"51% probability of 18.0 \pm 1.6°C and 49% prob of 26.2 \pm 1.0°C"

On July 28 at noon Mean and standard deviation: Upper bound = 22.8°C... but 20% of the members are > 22.8!

Ensemble weather prediction:

- Complex and chaotic system
- Prone to multimodality
- •Large and small scales co-exist
- Of great socio-economic importance

Our method:

- Reveals multimodality & its uncertainty
 Aids the understanding of ensemble weather prediction
 Provide fully automated solutions
- •Provide quantitative and qualitative information