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|. Context & motivation:

Interpreting ensemble datasets

Temperature meteogram, Bergen (Norway), July 2019 Common interpretation
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Ensemble data:

N (= 50) univariate time series (each called member)
evolved out of:

.Perturbed initial condition
Different models

Common interpretation method:

.Mean as expected value
.Standard deviation as uncertainty

Revealing Multimodality in Ensemble Weather Prediction

2021-06-23



|. Context & motivation:

Multimodality

What is a multimodal distribution?
Multimodality:
Number of modes (i.e likely outcomes) k>1

Univariate distribution
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|. Context & motivation:

Multimodality

What is a multimodal distribution?

Multimodality: Random samples from a distribution
Number of modes (i.e likely outcomes) k>1 of univariate time series
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|. Context & motivation:

Multimodality

Atmospheric system:

Chaos + Stability
=> prone to multimodality
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Temperature meteogram
Bergen (Norway)
July 2019
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[l. Problem

Tasks:

T1. Estimate the number of modes k at each time step t
T2. Summarize each mode at each t

T3. Determine when modes appear and/or disappear
T4. Determine all possible connections between modes

Random samples from a distribution of univariate time series
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T2. Summarize each mode at each t

T3. Determine when modes appear and/or disappear
T4. Determine all possible connections between modes

Random samples from a distribution of univariate time series

Kmeans algorithm on the entire time series
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[l1. Problem

Tasks:

T1. Estimate the number of modes k at each time step t
T2. Summarize each mode at each t

T3. Determine when modes appear and/or disappear
T4. Determine all possible connections between modes

Consequence:
We independently cluster the members at each time step

Member values

Random samples from a distribution of univariate time series
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[l1. Problem

Design rationales:

1. The distribution can have any shape
sNumber of modes k and type of distribution
unknown

2. All ensemble members matter
>Outliers should not be ignored

3. All scales matter
>Avoid thresholds

4. Not a black box

>The process of determining k,

>Its uncertainty

sand the consequences of choosing a particular k
should remain transparent

Member values

Random samples from a distribution of univariate time series
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lll. Revealing multimodality

Our method

Graph construction

For each time step t:

1) Cluster the data assuming successively
2)k=1,2,3,..,N

3) Associate each assumption k with a score
4) Define a life span for each assumption k
5) For each cluster, create a vertex

6) Create edges between vertices
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Graph construction

For each time step t:

1) Cluster the data assuming successively

2)k=1,2, 3,.., N .
A proxy for their

3) Associate each assumption k with a score @ e

4) Define a life span for each assumption k

5) For each cluster, create a vertex

6) Create edges between vertices

2021-06-23




lll. Revealing multimodality

Visualization tools

Entire graph view:
Concurrently displays the clustering outcome for all k
.Opacity Life span

.Color k assumed
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lll. Revealing multimodality

Visualization tools

Entire graph view: Most relevant components view
Concurrently displays the clustering outcome for all k Most relevant interpretation
.Opacity Life span (automatic or user-defined)
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lll. Revealing multimodality

Application
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On July 27 at noon

Mean and standard deviation:

“22.3 £ 4.7°C”

Our method:

“51% probability of 18.0 & 1.6°C and 49% prob of 26.2 £+ 1.0°C”

On July 28 at noon

Mean and standard deviation:

Upper bound = 22.8°C... but 20% of the
members are > 22.8!
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Conclusion

Ensemble weather prediction:
.Complex and chaotic system

.Prone to multimodality

.Large and small scales co-exist

.Of great socio-economic importance

Our method:

-Reveals multimodality & its uncertainty

-Aids the understanding of ensemble weather prediction
.Provide fully automated solutions

.Provide gquantitative and qualitative information
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