Fog Prediction in North India using AI

Aug 30, 2021

Motivation

- Major fog in North Indian IGP during peak winter months (Nov-Feb)
- Impacts flight operations, road accidents, agriculture.

Fog: Definition

Fog is caused by tiny water droplets suspended in the air, reducing visibility at the Earth's surface

Fog is measured w.r.t. visibility. *Visibility* is the measure of distance upto which an object can be perceived.

If observed visibility at a location is below 1 km, then it is considered foggy. Otherwise, mist! (WMO 2003)

Fog Classification

• Temperature falls to low values, making water molecules condense.

Fog Based On Visibility	Visibility Range (m)
Very dense fog	<50
Dense fog	51 - 200
Moderate fog	201 - 500
Shallow fog	501 - 1000

Fog Types On Indian Landmass

Types of fog:

- → Radiation Fog
- → Advection Fog
- → Precipitation Fog
- → Evaporation Fog
- → Upslope Fog
- → Valley Fog
- → Freezing Fog
- → Ice Fog

Radiation fog

- □ Requires Radiative Cooling
- Clear Skies
- High Humidity value

Author (year)	Study area (# stations)	Frequency	Objective
Salman et al. (2020)	Hang Nadim Batam Indonesia Airport (1)	1 day	Visibility forecasting with ARIMA using temperature, dewpoint, humidity.
Pithani et al. (2020)	IGIA, Delhi, India (1)	1 h	Capture variability of fog onset, understand fog formation and limitation of current NWP models
Srivastava et al. (2017)	Ghaziabad, Delhi NCR (1)	1 day	Observation-based climatology and ARIMA forecasts. Predicting number of foggy days, onset, dissipation, duration, intensity
Bednar et al. (2010)	UAE (10)	1 h	Fog spreading as well as fog formation models
Ferrari et al. (2015)	Canberra International Report, Brazil (1)	1 h	Fog classification (binary) using multilayer perceptron
Dewi et al. (2019)	Wamena Airport, Indonesia (1)	1,2,3 h	Fog classification using tree based (Stacked Ensemble of Models)
Wang et al. (2017)	Urumqi International Airport (1)	1 h	Multilayer perceptron model for Fog regression

Objectives

- Detect fog events using ground observations of visibility
- Short-range forecasts of visibility at daily & seasonal scale
- Identify onset/departure of fog
- Historical data of last 20-40 years used for the analysis

Study Area

Data (In-situ)

- → Half-hourly METAR (METeorological Aviation Reports) visibility reports from IEM
- → 1974-2020 (Nov-Feb)
- → Lucknow Airport (VILK)
- → Attributes
 - Visibility (km)
 - Air Temperature (°C)
 - Dew Point Temperature (°C)
 - Relative Humidity (%)
 - Wind Speed (kmph)
 - Wind Direction (degree)
 - Pressure altimeter (inch)
- → Normalization
- → Transformation (missing values, units, thresholding etc.)

Modeling Fog

• Machine Learning

- Regression
- Classification
- Time Series
- Deep Learning

Data Analysis - Correlation Plots

- Dew Point Temperature (T_d)
- Air Temperature (T)
- Relative Humidity Percentage (RH)
- Difference in Air Temp & Dew Point < 2.5 °C
- Calculate Dew point: T_d = T ((100 RH) / 5)

Regression Results

- Lucknow Airport METAR data
- Train Dataset : (2000 2015), Test Dataset: (2016 2020)

6 HOUR FOG PREDICTION

Regression Results (contd.)

- Increase in RMSE with increase in Lead time.
- With addition of variable "Average Visibility", there is reduction in RMSE.

SHAP Values

- *SHAP (SHapley Additive exPlanations)* is a method to explain individual predictions.
- The goal of SHAP is to explain the prediction of an instance *x* by computing the contribution of each feature to the prediction.

• Variable

- (a) COS: Related to time.
- (b) Month Period: Dec & Jan.
- (c) Time Period: Day (6am to 6pm) Night (6pm to 6am)

Target: 3 hour Visibility

Statistical Models

Models that estimate parameters like mean, variance, class probabilities to gather information about data.

- Time series is stationary : No upward/downward trend or seasonal effects.
 - Constant mean
 - Constant variance
 - Autocovariance constant over time [homoscedasticity]
- Time series is stochastic. Each event is random
- □ Time series can be cyclic

ARIMA

- ADF test/MK test
- First-order differencing
- Estimation of coefficients MLE/Grid Search

ARDL

- Include lags for exogenous and dependent variables
- Upto 2 lags for visibility, temp, dewpoint, wind speed
- Upto 1 lag for wind direction, altitude

Results

Autocorrelation

16

Deep Learning

Learning dependencies through neural networks and gating mechanism!
Use of feedback connections

Classification

Binarize the visibility values : Visibility < 1 km → Fog; Else → No Fog

Result heavily influenced by class imbalance!

Summary

- Evaluation during winter months (Nov-Feb) over parts of North India using ground-based observations of visibility
- Significant class imbalance!
- □ Simpler models tend to provide accurate results than the sophisticated ones
- □ Most common fog type is radiation fog during early morning hours in North India

Work Ahead...

- □ Use of satellite (INSAT-3D) data to predict real-time fog
- □ Medium & long-range forecasts
- Adding additional variables for predicting fog : Soil moisture ,Rainfall
- □ Visibility reduction due to aerosols *Fog or Smog*?

Result dissemination : <u>https://fog.iitk.ac.in/</u>

Lucknow

IIT Kanpur

Fog Prediction

Location: Lucknow Observations at 11/08/2021, 05:30 PM Visibility: 4.01 km Temperature: 31°C

Relative Humidity: 89.13% Wind: 7.41 km/h Wind direction: 180° ↑

Visibility below 1 km indicates presence of fog.

GO

PAST PREDICTIONS

COMPARE RESULTS

ABOUT

Fog Prediction Team

Deshpande Prasad Jayant prasadj@iitk.ac.in

Chaman Jangra cjangra@iitk.ac.in

Dr. Arnab Bhattacharya arnabb@iitk.ac.in

kritib@iitk.ac.in

Yash Saraswat yash20@iitk.ac.in

Dr. Shivam Tripathi shiva@iitk.ac.in

shruti20@iitk.ac.in

Rakshit Paurwal rakshup@iitk.ac.in

Dr. Mahendra K. Verma mkv@iitk.ac.in

