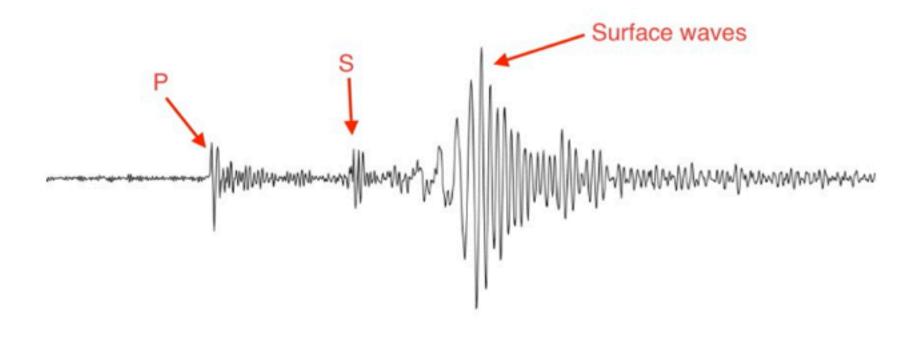
## PUSHING SEISMIC DATA ANALYSIS AND AI TO THE EDGE

#### SCALABLE LARGE-N SMART SENSOR NETWORKS

Third ITU/WMO/UNEP Workshop on Al for Natural Disaster Management


slides: https://quakesaver.quakesaver.io/presentations/itu-workshop

#### DISCLAIMER

This talk is partially about AI

# WHAT MAKES EARTHQUAKES RISKY? HOW CAN THIS RISK BE MITIGATED?

#### A TYPICAL EARTHQUAKE



#### **DURING AN EARTHQUAKE**

Accurate and fast earthquake early warning

evacuation, stopping trains, turn of gas

Measure building sway

#### BEFORE AN EARTHQUAKE

Knowing building properties

Material, height, footprint, age, ...

Understanding sub-soil

#### AFTER AN EARTHQUAKE

Fast shaking evaluation

Building damage assessment

Informed decisions of early responders

#### THE IDEAL WORLD

Very dense seismic networks

Monitoring on building level

#### **CHALLENGES**

Streaming a lot of data (data traffic)
Sensors, infrastructure, maintenance

Data privacy

Data center - single point of failure

#### QUAKESAVER

Founded in 2018 as a spin-off from GFZ
Highly affordable sensors
Open source software
Robust and secure sensor systems
Scalable fleet deployment
Flexible and extensible

### SENSORS



#### **HIDRA**

Highly sensitive short period sensor

structural health monitoring

Regional and weak seismicity

Fully integrated system Rugged



#### **MEMS**

In-door installations

Strong motion measurement

**Building analysis** 

Structural health monitoring

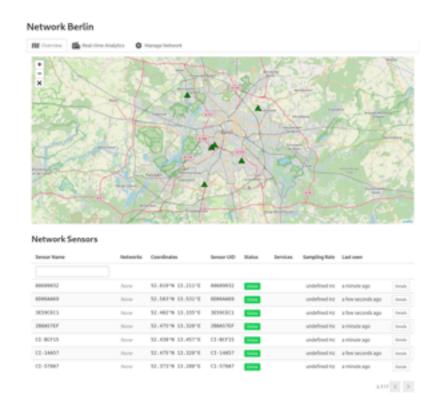
Patent pending



#### SHARED FEATURES

Combining affordability with performance

Operate on a dedicated embedded Linux


Complete remote control and updates

Open source sensor software

Extensible through your plugins

Capable CPU

#### SENSOR FLEET MANAGEMENT



Simple management of large-N networks
Real-time digital twin
Remote configuration
Low-latency data streams

#### SENSOR INSTALLATIONS

Japan

Germany

Switzerland

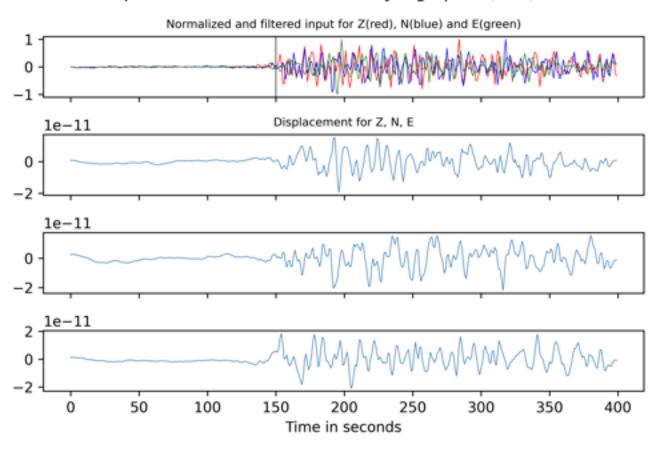
France

Montenegro

Turkey

## PUSHING ANALYSIS AND AI TO THE EDGE

#### BENEFITS


Distribute the workload and responsibility Increased robustness Autonomous decision making Improved data privacy Real-time data analysis Drastically reduce transmitted data Scalability and cost-effectiveness

#### ONGOING AI PROJECTS

In collaboration with Jannes Munchmeyer (GFZ) and Viola Hauffe (University of Magdeburg)

#### AI EVENT DETECTION

Modified data with P-Pick, was detected as P-Wave? True Example:141 Waterlevel:30 and only high-pass (2Hz) filter



## AI SINGLE STATION METHODS

Estimate distance and magnitude

Evaluate uncertainties

#### CONCLUSIONS

Pushing data analysis (AI and others) to the edge

Improves scalability

Real-time data analysis at minimum data transmission

Enables large-N networks

#### A SHOUT-OUT

Share your ideas!

Bring your ideas to market

Your institutes will help you with that

#### QUESTIONS!

#### **RESOURCES**

https://resiliencymaps.org

https://www.youtube.com/watch?v=iGtRko8y4Fo&t=68s

P phase detection example courtesy by Viola Hauffe

screenshots, rendered sensor images by QuakeSaver GmbH