Al for flood risk warning and communication: a network of rain gauge cameras on a 5G telecommunication network

Dr. Raffaele Albano Dr. Nicla M. Notarangelo

School of Engineering - UNIBAS

raffaele.albano@unibas.it

Outline

- 1. Lab Presentation
- 2. Al for flood risk mapping
- 3. Al for supporting flood early warning system
- 4. Al rain gauge cameras on a 5G telecommunication network

UNIVERSITA' DEGLI STUDI

DELLA BASILICATA

Location

School of engineering of the University of Basilicata

The School of engineering of the of the Basilicata University has a group of researchers that cover a wide range of research activities in the field of Hydraulic Constructions, Hydraulics, Hydrology and Water Resource Management.

Staff:

Prof. A. Sole, Prof. S. Manfreda, Dr. R. Albano, Dr. D. Mirauda, Dr. B. Onorati, V. Scuccimarra, Eng. L. Mancusi, Dr. A. Cantisani, Dr. Silvano dal Sasso, Dr. Nicla Notarangelo and Eng. Arianna Mazzariello

Laboratory of Hydraulic Construction and Hydraulic

Flood Risk Mapping

Al for buildings detection and land-use classification

Contingency maps obtained from a pixel-to-pixel comparison between the masks outputted by the models and the ground truth by urban area: true positives are shown in yellow, false positives in red, and false negatives (missed building pixels) in blue.

Flood Early Warning System

Easily available photographing devices serve as AI-based rain detectors for monitoring the onset and end of rain-related events. Software_ R with Keras and Tensorflow (Chollet & Allaire, 2018) Classes_ With Rain (WR) and No Rain (NR) Dataset criteria

- Outdoor images
- Presence of natural rain (not digitally synthetized)
- Rainfall visibility
- Heterogeneous sceneries

Transfer Learning with Feature extraction Model Architecture

Layer (type)	Output Shape	Param #
vgg16 (Model)	(None, 6, 6, 512)	14714688
flatten (Flatten)	(None, 18432)	0
dense (Dense)	(None, 256)	4718848
dropout (Dropout)	(None, 256)	0
dense_1 (Dense)	(None, 1)	257
	T.I.I	

Total params: 19,433,793 – trainable: 4,719,105

Dataset

Image2Weather (Chu et al., 2017)

Dashcams moving around Tokyo metropolitan area (©NIED) and XRAIN radar (©NIED, Hirano et al. 2014; Hirano and Maki 2018).

Experiments in Large-scale Rainfall Simulator of the NIED located in Tsukuba, devices: Canon XC10, Sony DSC-RX10M3, Olympus TG-2, XiaoYI YDXJ 2, XiaoMi MI8. 15 minutes intervals with constant produced intensity (20 mm/h - 150 mm/h)

Training and validation

Data Augmentation Dropout Metric: accuracy Loss: binary cross entropy RMSprop Optimizer Dropout Learning rate: $Ir = 1 \times 10^{-5}$

Training: accuracy 88.95% loss 0.27 Validation: accuracy 85.47% loss 0.33

Binary Cross Entropy =
$$-\sum_{i=1}^{C'=2} t_i \log(f(s_i))$$

Where t_i = groundtruth
 s_i = score for the C_i class
 $f(s_i) = \frac{1}{1+e^{-s_i}}$ = sigmoid activation function.

Use Case

The model was implemented in a real world setting with a Reolink surveillance camera installed by TIM using 5G connectivity. The camera frames piazza Vittorio Veneto the main square in UNESCO World Heritage Site of Matera (Italy). Being a touristic point, the scene is often populated by moving pedestrians, bicycles, police cars, and service vehicles.

Metric	Value test set	Value TIM set	Reference Values*
Overall accuracy	85.28%	85.13%	worst=0% best=100%
Cross Entropy Loss	0.3400635	0.3960878	$\text{perfect}\approx 0$
Sensitivity - Recall	90.44%	83.14%	worst=0% best=100%
Specificity	80.13 %	87.12%	worst=0% best=100%
Precision	81.98%	86.58%	worst=0% best=100%
F ₁	0.8600	0.8482	worst=0 best=1
Matthews correlation coefficient MCC	0.7094	0.7031	worst=-1 best=+1

*Goodfellow et al. 2016; Zheng 2015; Murphy 2012; Chicco and Jurman 2020.

https://doi.org/10.3390/w13050588

Use Case

A frame in rainy condition (26th March 2020) and its corresponding Gradient-weighted Class Activation Mapping (**Grad-CAM**) (Selvaraju et al. 2016), a heatmap visualizing the input regions considered more "rainylike" by the CNN.

	men	iory	Time	
libraries		0.6	30	
	-2.0	1.7	610	
		0.9	1370	
		0.5	10	
	-4.2	3.7	190	
	-60.9	79.5	1600	
		0.5	20	
Model load		0.3	2750	
Model weights load		0.1	110	
Test data generator		0.3	110	
Model compiling	-5.3	0.3	120	
Prediction		0.4	28590	
random sample showing predicted versus actual		0.2	10	
		0.7	20	
Evaluation of the model (all metrics)		0.5	29210	
	-3.2	1.9	80	

Interval 10 ms - total

Algorithm profiling with R Profvis library (Chang and Luraschi 2018)

64830	ms	(100	img)
122600	ms	(200	img)
166850	ms	(400	img)
275260	ms	(700	img)
461180	ms	(1100	img)
513740	ms	(1600	img)

Results compared to literature

Method	Model and Features used	Image source	Classes	Overall Accuracy	Sensitivity (Rain)
Yan <i>et al</i> . (2009)	Real AdaBoost with histogram of gradient amplitude, HSV color histogram, road information	In-vehicle vision system	Sunny, Cloudy, Rainy	91 .92 %	90.41%
	-	Crawled outdoor scenes, (reported in Zhang et al. 2016)		18.89%	-
Zhang <i>et al</i> . (2016)	Multiple kernel learning with engineered features (sky, shadow, rain streak, snowflake, dark channel, contrast, saturation)	Crawled outdoor scenes	Sunny, Rainy, Snowy, Haze	71.39%	67%
Chu <i>et al</i> . (2017)	Random Forest with time, RGB color histogram, Gabor wavelet, intensity histogram, local binary pattern, cloud, haze, and contrast features	Crawled outdoor scenes	Sunny, Cloudy, Snowy, Rainy, Foggy.	76.8%	68%
Proposed method	CNN with pre-learned filters	Dash-cams, consumer cameras, outdoor scenes (Chu et al. 2017), smartphone	With Rain, No Rain.	85.28%	90.44%
		Surveillance camera		85.13%	83.14%

Notarangelo, Nicla M., Kohin Hirano, Raffaele Albano, and Aurelia Sole (2021). "Transfer Learning with Convolutional Neural Networks for Rainfall Detection in Single Images" In: *Water*. DOI: <u>https://doi.org/10.3390/w13050588</u>

Work in progress...

The proposed methodology was applied to a second scenario: a multi-class classification describing a range of quasi-instantaneous rainfall intensity. **The cameras act as rain estimators**.

The multi-class model reached test average accuracy and macro-averaged F1 score values of 77.71% and 0.73 for a 6-way classifier, and 78.05% and 0.81 for a 5-class. The best performances were obtained in heavy rainfall and no-rain conditions, whereas the mispredictions are related to less severe precipitation.

Future steps

Further experiments	Mobile app development	Public Initiatives	Incremental Learning	Smartness
 Increase in spatial density of rain observations Opportunistic sensing (Dickinson et al. 2010) 	 Crowdsourced data Users as volunteer sensors (Goodchild 2007) 	• Outreach	 Model improvement during use Robustness to rainfall intensity and artifacts Use case scenarios: site-specific rainfall thresholds, snow, etc. 	 Communication Participation Public awareness, Emergency response Smart city

Thank you for your attention

Dr. Raffaele Albano Dr. Nicla M. Notarangelo

raffaele.albano@unibas.it nicla.notarangelo@gmail.com