

Common User Profile Format

PRADIPTA BISWAS, PHD(CANTAB)

ASSISTANT PROFESSOR, INDIAN INSTITUTE OF SCIENCE

CO-CHAIR, IRG AVA, INTERNATIONAL TELECOMMUNICATION UNION

MEMBER, UKRI INTERNATIONAL DEVELOPMENT PEER REVIEW COLLEGE

HTTPS://CAMBUM.NET/, PRADIPTA@IISC.AC.IN

Common User Profile Format

- Creating a common user profile format to offer personalized service to people with different range of abilities
- > Deploying in a device and application independent format
- Adapting user interface parameters like font size, colour contrast, audio volume, arrangement of screen elements and so on
- ➢ Following up earlier similar work at EU standardization committee on user modelling, ITU FG AVA and presently Q11/9 of ITU SG9 and Q26 of ITU SG 16 and ITU SG6.

Proposed Approach

A common minimal profile that will be acceptable by many

[3D

- Any service provider can add more variables specific to application or new scientific invention.
- Details should not reveal any personal information or details on specific cause of impairment
- A user profile creation application will be run locally to populate these fields

- User Preference
 - Colour combination
 - Audio volume
- Minimum Font Size
 - Critical element
 - Non-critical element
- Minimum Colour Contrast
 - Critical element
 - Non-critical element
- Subtitle
 - Minimum font size
 - Speed
 - Language
 - Maximum latency
 - Window length and width

- Cursor
 - Minimum size
 - Colour contrast
 - Speed
- Screen Element
 - Minimum size
 - Inter element spacing
- Preferred I/O Modality
 - o ASR
 - ο TTS
 - Eye Gaze
 - Haptics
- Language
 - Primary
 - Secondary

Security Aspects

- > Format does not specify the physical or network media for storage
- Format does not specify any encryption algorithm or range (end-to-end vs others)
- Profile is stored anonymously
- > Profile needs not to be stored on server, can only be stored on client side
- >A mapping mechanism can be implemented to share only interface parameters and profile information can be stored on client machine only.
- However, a trusted source can also keep a common repository and use it to personalize applications across multiple platforms

Ways of Integration

Invoking a mapping application between users' range of abilities and interface parameters

Executing at server side

I3D

Executing at client machine

Choosing appropriate stylesheet based on user profile

Modifying settings at

- Application level
- Browser level
- Operating System level

Profile Code	GS	Tremor	ROMW	Minimum Font Size	Colour Blindness	Adaptation	Predicted Best Modality	Colour Contrast	Button Spacing
	(in kg)		(in degree)	(in point)					
A	16	YES	71	14	Protanopia	Gravity Well	Pointing/Screen	Blue White	20*
В	25	NO	52	14	Protanopia	Damping	Pointing/Gesture/ Screen	Blue White	20
С	59	NO	66	12	Deuteranop ia	Damping	Pointing/Gesture/ Screen	Blue White	20
D	59	NO	66	0	N/A	Damping	Speech/Audio	N/A	20
E	25	YES	52	14	None	Gravity Well	Pointing/Screen	Any	20
F	59	NO	120	14	Tritanopia	Damping	Pointing/Gesture/ Screen	White Black	5*
G	9	NO	63	14	None	Gravity Well	Pointing/Screen	Any	20

Interface Personalization

Simulation

Simulation of visual / auditory perception and eye gaze and cursor movement of users

Developers can

- understand
- visualize
- measure effect of impairment on design

Used in EU GUIDE and DST-EPSRC IUATC projects

Presented at ITU FGAVA, IRGAVA and ISO SC35 and SC36 committees

Validated Inclusive User Model that is validated for a wider range of abilities of users than existing work

Simulation Examples

Conclusion

[3D

Reducing digital divide

Personalizing systems and services to promote accessibility

Sharing personalizing information and meta data in secure and platform independent way

Helping conformance to UN CRPD

