

Overview of Public-Key Infrastructure

First ITU-T X.509 day 9 May 2022

Erik Andersen

era@x500.eu

In public-key cryptography there are two mathematically related cryptographic keys

Currently used algorithms:

- RSA (Rivest-Shamir-Adelman)
- Elliptic curve based cryptographic (ECDSA & EdDSA)

Public-key cryptography

Public-key cryptography

Is also called

asymmetric cryptography

in contrast to

symmetric cryptography, e.g., used for encryption like Advanced Encryption Standard (AES)

Symmetric cryptography <u>vs.</u> Asymmetric cryptography

Two communication entities:

Symmetric cryptography:

 Same key used by both communicating entities, e.g., for encryption and decryption

Asymmetric cryptography:

- One entity uses its private key, e.g., to create a digital signature
- The other entity uses the public key of its communication partner to verify the signature

Digital signature

A digital signature is bound to the document being signed

- 17
- If the document changes, a new changed signature must generated

If the document is changed after being signed, the verification will fail

In contrast to handwritten signature

Provides integrity in addition to authentication

Public-key certificate

Public-key infrastructure (PKI)

A public-key infrastructure (PKI) is a set of policies, hardware, software, and procedures needed to create, manage, distribute, use, store, and revoke public-key certificates

PKI Components

- IETF RFC 2986, PKCS #10: Certification Request Syntax Specification, Version 1.7
- IETF RFC 4210, Internet X.509 Public Key Infrastructure, Certificate Management Protocol (CMP)
- **ETF RFC 5272, Certificate Management over CMS (CMC)**
- **IETF RFC 5934, Trust Anchor Management Protocol (TAMP)**
- IETF RFC 6960, X.509 Internet Public Key Infrastructure Online Certificate Status Protocol – OCSP

Several IETF RFCs about cryptographic algorithm

Chain of trust within traditional public-key infrastructure (PKI)

PKI Domain:

Public-key infrastructure (PKI) cross certification

Two communication entities:

• Key transport:

 Symmetric key generated by one entity and encrypted using asymmetric encryption or key encapsulation for transport to the other entity

• Key agreement:

Key established by e.g., using Diffie-Helman key exchange

Key management

