Some thoughts on the future of ITU-T X.509 and related specifications

First ITU-T X.509 day 9 May 2022

Erik Andersen

era@x500.eu

It is out there. It is working. Thousands of working systems are out there.

It is a done deal!

or is it?

Introducing authorization and validation lists (AVLs)

Migration of cryptographic algorithms for

- public-key certificates
- attribute certificates
- certificate revocation lists
- authorization and validation list
- All non-PKI and all non PMI have been moved to other parts of the X.500 series
 - A clear separation between PKI and PMI

Unbundled from other parts of the X.500 series meaning fast progressing

General challenges

Requirement for lightweight, but strong cryptographic algorithms

Lean and secure communication protocols

Scalable specifications

Adapting PKI to the new environments

Two opposite trends:

The bad guys get stronger The good guys get weaker with large attack surface

Helping the small guys

PKI puts several requirements on participating entities

- Offload some of these requirements to a stronger entity supporting constrained entities
- Facilitated using authorization and validation lists (AVLs) – An advanced whitelist

Environments without resource constraints

The second secon

Storage constrained

Processing constrained

Limited bandwidth

Time requirements, e.g., 1 ms validation time

Authorizer relationships

Three specifications complementing each other:

Standards activities

Rec. ITU-T X.509 | ISO/IEC 9594-8:

- Extension of the AVL concept to have comprehensive support for IoT devices
- Refine the attribute specification
 - **Clearly define the relationship between PKI and PMI**

Rec. ITU-T X.510 | ISO/IEC 9594-11:

- Final specification exists
 - Amendment in progress (key confirmation, cryptographic algorithm definitions, E2E support with intermediate systems, etc.)

Protocol for protecting other protocols with migrating capabilities

Standards activities

Rec. ITU-T X.507(?) | ISO/IEC 9594-12:

Somewhat detailed tutorial type of description of cryptographic algorithms with reference to relevant NIST and IETF specifications

Future version to include post-quantum algorithms

Some mathematics behind cryptographic algorithms

PKI best practice

Key management

Decentralized public-key infrastructure DPKI (ITU-T X.508?)

Public-key infrastructure (PKI) long certification path

Long chain of trust

A trust B, B trust C, ..., I trust J

Can A then trust J?

The longer the chain of trust is, the more diluted trust becomes

It seems problematic to create a world-wide federated PKI having world-wide trust using current PKI trust model.

A PKI where trust is obtained by **CONSENSUS**

A decentralized PKI (DPKI) based on the blockchain technology