

Fundamental 6G security requirements Mika Ylianttila University of Oulu Finland

6GFLAGSHIP.COM | #6GFLAGSHIP

ITU Workshop on "Security for 5G and beyond" Geneva, Switzerland 22.8.2022

Mika Ylianttila (M. Sc, Dr.Sc, eMBA) is a full-time associate professor (tenure track) at the Centre for Wireless Communications (CWC), at the Faculty of Information Technology and Electrical Engineering (ITEE), University of Oulu, Finland. He leads <u>NetSEC (Network security, trust and privacy) research group</u> at CWC Networks and Systems research unit, which studies and develops secure, scalable and resource-efficient techniques for 5G and beyond 5G systems.

Www: <u>https://www.oulu.fi/en/researchers/mika-ylianttila</u> <u>https://www.oulu.fi/en/research-groups/network-security-trust-and-privacy</u>

6G World's First 6G Research Program

6G Enabled Wireless Smart Society & Ecosystem

- National Flagship for 2018-2026
- Volume 251 M€
- Operated by University of Oulu
- Collaboration with Nokia, VTT, Aalto University, BusinessOulu, OUAS.

6G Flagship was elected as Finland's high-tech Flagship, by Finnish Government through Academy of Finland

Wireless Connectivity

Ultra-reliable low-latency communications vs. 1 Tbps

Enabling **Unmanned Processes**

Devices & Circuits

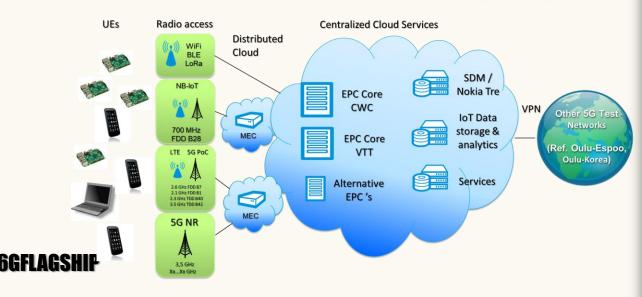
THz communications materials & circuits

Enabling Unlimited Connectivity

Distributed Computing

Mobile edge intelligence

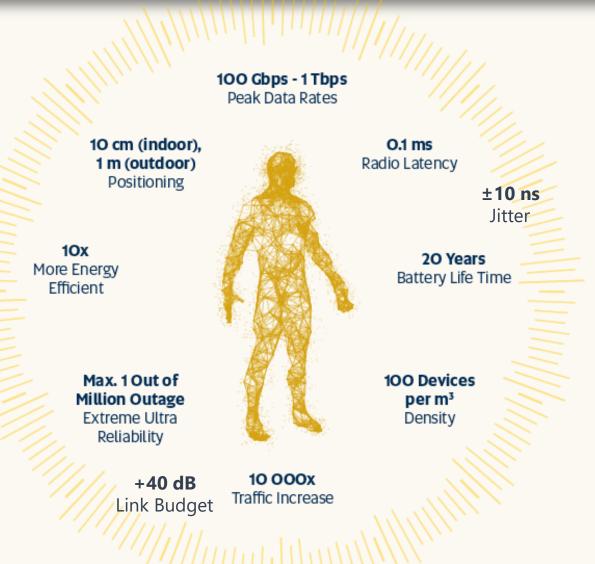
Enabling Time Critical & Trusted Apps


Services & Applications

Multidisciplinary research accross verticals

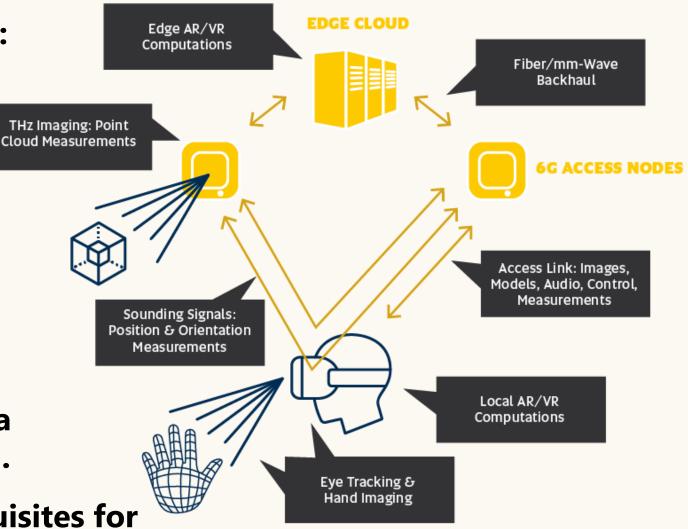
Enabling **Disruptive Value Networks**

- To support companies in **finalisation of the 5G** standard by carrying out technology and system pilots.
- To develop/co-create the fundamental technology components to enable 6G systems.
- To speed up dependable, robust and secure digitalisation of society via 5G and 6G.


Vision for 2030

Our society is data-driven, enabled by near-instant, unlimited wireless connectivity.

6G will emerge around 2030 to satisfy the expectations not met with 5G, as well as, the new ones fusing AI inspired applications in every field of society with ubiquitous wireless connectivity.


5 Initial 6G Key Performance Indicators (KPIs)

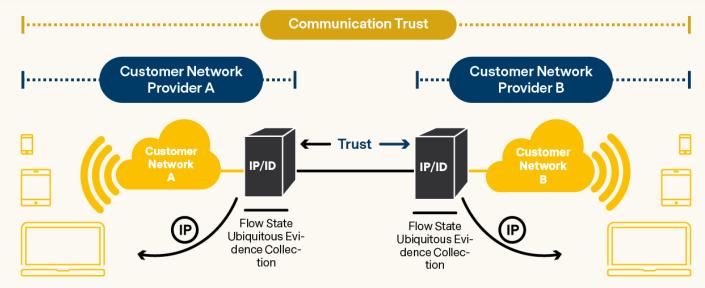
- Generic 6G targets presented by academia and industry in different fora.
- More dense networks -> more vulnerabilities and potentially malicious/compromised nodes
- More personal and sensitive IoT/measurements/confidenti al data moved in the network
 -> need for better privacy

6G Merges Communications with New Applications

- 6G is not only about moving bits: it will become a framework of services, including communication service.
- In 6G, all user specific computation and intelligence may move to edge cloud.
- Integration of sensing, imaging and highly accurate positioning capabilities with mobility opens a myriad of new applications in 6G.
- Trust and privacy are key prerequisites for successful 6G service platform.

Nokia's view on 6G timeline

6GFLAGSHIP. COM I #6GFLAGSHIP


6G White Paper: Research Challenges For Trust, Security And Privacy. http://urn.fi/urn:isbn:97

6GFLAGSHIP.COM | #6GFLAGSHIP http://jultika.oulu.fi/files/isbn9789526223544.pdf

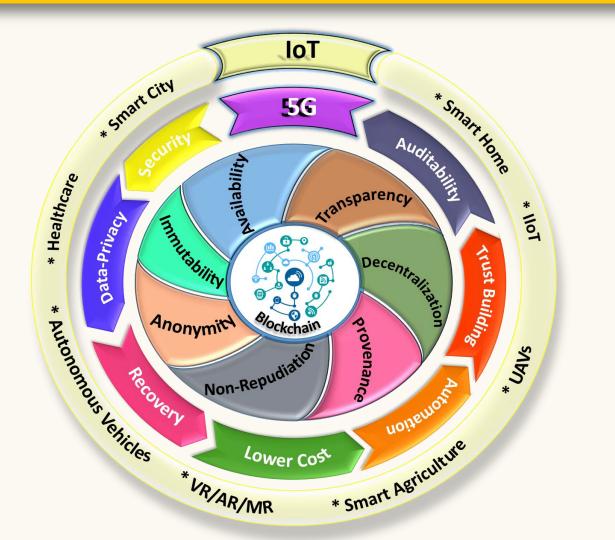
End-to-end trust networking for 6G

- 6G needs a network with embedded end-to-end trust, advanced security and privacy
- 6G will create data markets privacy protection will be a key enabler.
- Machine learning/AI and blockchain may play a major role in 6G networks.
- Post-quantum vs. architectural aspects of security

M. Ylianttila, R. Kantola, A. Gurtov, L. Mucchi & I Oppermann (Eds.). (2020). 6G White Paper: Research Challenges For Trust, Security And Privacy. (6G Research Visions, No. 9). University of Oulu. <u>http://urn.fi/urn:isbn:9789526226804</u>

Youtube: 6G Flagship Webinar on Fundamental Research Challenges for Trust, Security and Privacy: <u>https://www.youtube.com/watch?v=rcEvAOnzuhQ</u>

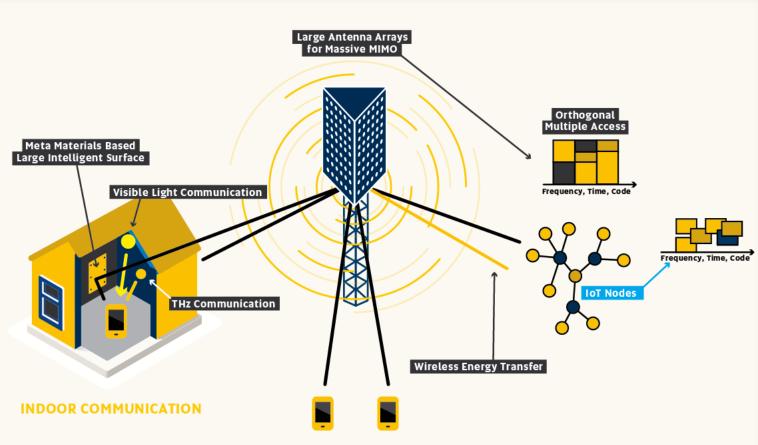
6G Added automation (AI/ML) in 6G and security


- Embedding intelligence and dynamicity to security
 - Multi-point threat detection, function migration
 - Software containers
- Autoconfiguring, zero-trust security
- Prevention of AI/ML based intelligent attacks
 - Example: poisoning and inference attacks to AI/ML models

- TelcoCloud is used for network functions and user data
- 6G low latency
 - Offloading functions from connected IoT devices, vehicles
- How Confidentiality, Integrity, Privacy ensured for remote data?
- Remote attestation, platform synchronization, encrypted search

Youtube: 6G Flagship Webinar on Fundamental Research Challenges for Trust, Security and Privacy: <u>https://www.youtube.com/watch?v=rcEvAOnzuhQ</u>

Distributed Trust for 5G/6G and IoT


- 6G needs a network with embedded trust
- Blockchain technology has many potential use cases:
- Distributed trust management for across networks
- lot data management
- Secure VNF migration
- Automation using smart contract
- Reliable service and QoS
- Billing of IoT devices
- Certification revocation

Tharaka Hewa, Anshuman Kalla, Avishek Nag, Mika Ylianttila, Madhusanka Liyanage, "<u>Blockchain</u> <u>for 5G and IoT: Opportunities and Challenges</u> ", in The 8th IEEE International Conference on Communications and Networking (IEEE ComNet'2020), Hammamet, Tunisia, March 2020

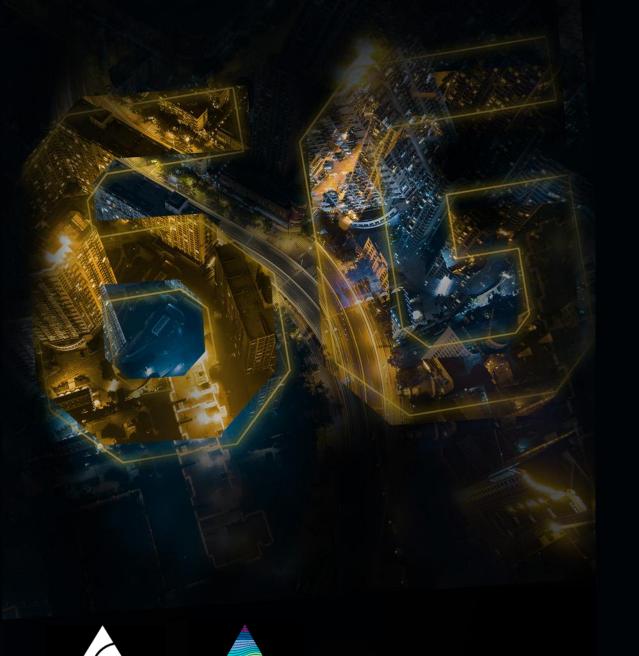
6G Physical Layer Security in 6G

- Security protection at the physical layer.
- Platform/software/code security, inherited problems, will it be solved during 5G
- Intelligent reflective surface (eavesdropping), how to make it more secure

 AI/ML will play a major role both in link and system level optimisation of 6G wireless networks -> threat analysis, prevention, identification and mitigation

6G and Post-Quantum Cryptography

- Quantum computer can become a reality
 - Symmetric crypto is OK
 - RSA is vulnerable to factorization
- NIST PQC standards
 competition -> standard will
 be ready in 2024
 - Implementing these in different systems will be a huge challenge for the latter half of 2020s


- Both encryption (through key exchange) and authentication (digital signatures) are in danger from quantum computers
- Currently quantum computers have some dozens of qubits and can not yet solve cryptographic problems
- To be effective in solving cryptography, quantum computers need qubits in the order of millions (based on current state of the art)
- When will we have such quantum computers?

Further information in Youtube: 6G Flagship Webinar on Fundamental Research Challenges for Trust, Security and Privacy:

https://www.youtube.com/watch?v=rcEvAOnzuhQ

- Analyzing 6G security threats, developing the use cases and security datasets for embedded security in 6G network.
- 6G network security architecture models on the embedded trust for increased level of information security in 6G.
- Modeling trust network, analyzing the foundational technologies and requirements for enabling trustworthy networking in 6G.
- Privacy preservation and requirements in 6G networks. Collaboration on global standardization (e.g. ITU) for 6G security.
- Bilateral collaboration for sharing, promotion and dissemination of joint research project outcomes, information sharing on Korea-Finland 6G security trends and activities.

ACADEMY OF FINLAND

FLAGSHIP PROGRAMME

Thank You!