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Introduction



Exact vs Approximate schemes

� Until 2017, all schemes we had were exact

� i.e. for any allowed circuit f , we had Dec(f (Enc(m))) = f (m)1

� Recall that most FHE schemes rely on (R)LWE, and thus an

encryption is equivalent to creating a (R)LWE instance

� I.e. we add some gaussian noise e

� The noise growth is managed via either bootstrapping or modulus

switching

� And is completely removed upon decryption

� The novelty with the CKKS scheme is that it is approximate - the

noise is never removed

� This has led to significant efficiency improvements, but the results

are now approximate, i.e.

Dec(f (Enc(m))) = f (m) + e ≈ f (m).
1Single-input for simplicity but generalises
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A side-by-side comparison

Scheme BGV BFV CKKS

Message encoding m + t · e ∆ · m + e m + e

Message encoding Lower bits Upper bits Approximate encryption

Decryption m′ =
[
[c0 + c1s]q

]
t m′ =

[⌊
t
q
[c0 + c1s]q

⌉]
t

m′ = [c0 + c1s]q

Multiplication m0m1 + t2e0e1 + t(e0m1 + e1m0) ∆2m0m1 + ∆(e0m1 + e1m0) + e0e1 m0m1 + m1e0 + m0e1 + e0e1

Noise growth is much slower in CKKS.
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Encoding noise

The CKKS scheme uses the canonical embedding to define an encoding

from the message space CN/2 to the plaintext space Z[X ]/(XN + 1) in

the following way: an isomorphism τ : R[X ]/(XN + 1) → CN/2 can be

defined by considering the canonical embedding restricted to N/2 of the

2N th primitive roots of unity and discarding conjugates. Encoding and

decoding then use this map τ , as well as a precision parameter ∆, as

follows:

Encode(z,∆) = ⌈∆τ−1(z)⌋, Decode(m,∆) =
1

∆
τ(m),

where z ∈ CN/2, m ∈ Z[X ]/(XN + 1) and ⌈·⌋ is taken coefficient-wise.
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Our work



What is noise and why is it interesting?

Noise in homomorphic encryption

� All ciphertexts have inherent noise

� Noise grows during homomorphic operations

Good understanding of noise growth is essential

� In exact schemes, either need to determine when to bootstrap or

need to know the noise in the output ciphertext

� In approximate schemes, cannot know what the precision loss will be

if we do not have a good understanding of noise

� This enables us to choose appropriate parameters, ideally small ones

� The noise in CKKS depends on some secret key material, which has

enabled the Li-Micciancio attack
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Contributions

� So far estimating the noise has mostly been done on an ad-hoc

basis; we provide a rigorous noise analysis of CKKS

� We de-tangle the encoding and encryption noise

� We also present an average-case noise analysis for CKKS

� Provide theoretical bounds for the precision loss

� Provide extensive experimental results
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Precision loss due to encryption

We propose three ways of looking at the noise in the ring:

� The Canonical Embedding (CE) analysis, which will serve as our

“benchmark”

� A Worst-Case in the Ring (WCR) method, where we follow a

worst-case analysis, but remain in the ring

� A Central Limit Theorem (CLT) method, where we trace the

variance through the homomorphic operations, and derive a bound

at the end of the circuit

� This is in contrast to previous methods, where we derived a

worst-case bound for each operation

� We introduce a failure probability α, which allows us to refine our

results further
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Experimental Results



Previous work - [CLP20]

Enc Add Mult ModSwitch

P x P x P x P x

35.0 41.1 34.0 40.2 17.0 26.0 - -

89.0 97.9 88.0 97.0 70.0 82.4 39.0 38.1

197 209 196 209 177 194 147 150

416 433 415 432 395 416 366 373

Table 1: The observed mean x of the noise budget in HElib ciphertexts in

10000 trials, with heuristic estimates of the noise growth denoted by P. Each

row corresponds to a parameter set with n ∈ {2048, 4096, 8192, 16384}.
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Noise in the ring

log(N) log(q) Experiments CLT

Addition noise.

13 109 10.88 11.40

14 219 11.44 11.93

15 443 12.00 12.45

Multiplication noise.

13 109 17.31 18.69

14 219 18.38 19.72

15 443 19.43 20.75

Table 2: Average bits of noise observed in the ring over 1000 trials in HEAAN,

for α = 0.0001 and ∆ = 240.
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Results in the complex space

log(N) log(q) Experiments CLT

Addition, complex error.

13 109 -21.92 -22.55

14 219 -20.72 -21.52

15 443 -19.70 -20.49

Multiplication, complex error.

13 109 -23.17 -21.51

14 219 -21.68 -19.92

15 443 -20.13 -18.72

Table 3: Average bits of error observed in the message space over 1000 trials

in HEAAN, for α = 0.0001 and ∆ = 240.

9



Applications of our results



Iterative algorithms - Newton-Raphson
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The Li-Micciancio attack - an exact scheme

A recent attack by Li and Micciancio ([LM21]) gives a key-recovery

attack, by exploiting the fact that the noise contains secret key material.
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The Li-Micciancio attack

� Noise flooding: Since the ciphertext decrypts to m + e, and e

may leak secret key information, we can “drown” e with fresh noise

e′ and output m + e + e′. This has already been adopted by

PALISADE

� Our work allows us to determine precisely the distribution of e′

� Only real decoding: Only release the real part of the decoding, as

adopted in SEAL

� We provide the theoretical justification for this
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Thank you!

https://eprint.iacr.org/2022/162

Code will be published soon
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