

The Optalysys Etech

Accelerating FHE with Silicon Photonics

© Optalysys Ltd 2022

Optalysys

An optical computing compagny

Optical computing for Fourier transforms and co

Founded in 2013

Optical Fourier transform for pattern matching, correlations, convolutions, and numerical derivative

Now moving to (much) smaller on-chip devices for integration in traditional computing system

Fully homomorphic encryption is a massive opportunity

Our technology unlocks the value of FHE through unprecedented acceleration and efficiency

https://www.frontier-enterprise.com/two-thirds-of-data-available-to-firms-goes-unused/

https://spanning.com/blog/cyberattacks-2021-phishing-ransomware-data-breach-statistics/

https://www.capita.com/sites/g/files/nginej291/files/2020-08/Ponemon-Global-Cost-of-Data-Breach-Study-2020.pdf

Under existing models of security...

FHE solves these problems We can realise the full value of data Where we fit: secure data processing hardware

Optics and FHE

Or how optical computing will solve the polymult bottleneck

The power of optics

The Optical Fourier Transform

- A near-instantaneous, massively parallel Fourier transform
- Extremely high data processing rates
- Core calculation process is ultra-low power

Fully complex Optical Fourier transforms eliminate multiple electronic operations

The Optalysys approach provides a path to real time processing of FHE encrypted data

Processing Fourier transforms electronically requires multiple clock cycles

Our solution: Key points

We target all operations on-chip to eliminate interfacing constraints

Support for all FHE schemes via unified NTT/FFT photonic architecture

Instruction set designed for low-level integration with FHE libraries and APIs

Parallel Etiles for FFT and NTT in a matter of nanoseconds

The Etech

Our plan to make real-time FHE a reality

Etile: The core optical unit

Multiple free-space optical elements for simultaneous computation of fixed-size FTs

> Modulators for data encoding (two branches for the real and imaginary parts)

Enable: Plug-and-play MCM

Optalysys

16 Etile cores + 4 Ensemble digital cores

Etile cores: High-precision Fourier transform / NTT computations of size ≤ 16

Ensemble cores: FFT / Fast NTT reconstruction algorithms, convolution, polynomial multiplication, polynomial addition, scalar-polynomial multiplication

Additional logic and memory to store server keys, relinearization, and bootstrap algorithms

Software stack

Firmware: Direct interaction with the Enable system (send / receive data, send instruction list, FT, NTT, iFT, iNTT, relinearization, bootstrap, ...)

Low-level: C/C++ and Rust interfaces for easy integration into existing libraries WIP custom interfaces for Concrete and OpenFHE

High level: Numpy, TensorFlow, and PyTorch interfaces Custom interface for Concrete-Numpy and Concrete-ML

Toward real-time FHE

Software acceleration

Target all the main FHE schemes: TFHE, DM, BGV, BFV, CKKS

How to learn more about us?

Medium page: https://medium.com/optalysys

of Life

Optalysys Oct 20 - 20 min rear

Edward Cottle Aug 31 - 9 min read

predicting vortex formation

with Edward Cottle and Joseph Wilson

Florent Michel Jun 7 · 13 min read

Website: https://optalysys.com

with the optical

Fourier Engine

Fourier-optical processor technology in a

We show that the Optalysys Fourier engine can accurately simulate wave propagation, including dispersive and dissipative effects

Simulating wave propagation

Florent Michel

Scaling up: Using Fourier

Optics for Bigger Transforms

The Fourier transform is a phenomenally useful mathematical tool annlied throughout the scientific world. Wherever nature contains a ... Optalysys Feb 11 - 13 min read

Optical Computing for Cryptography: Fully Homomorphic Encryption Fourier-Optical computing has the capacity to deliver tremendous improvements in artificial intelligence,

but that's not the only field to ... Joseph Wilson

Florent Michel Apr 9 - 17 min read

Fourier-optical computing:

Optical computing is fast, but the way we conventionally think about faster

computing can miss the greater point.

Acceleration squared

Optalysys May 28 - 8 min read

Optical Computing for Cryptography: Lattice-based Cryptography

Optical Computing for Post-Ouantum Cryptography: Why we need PQC

The MFT System Part 3: Detection If you've been reading our previous

Thank you for your attention!